matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentialgleichungenMehrschrittverfahren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Differentialgleichungen" - Mehrschrittverfahren
Mehrschrittverfahren < DGL < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mehrschrittverfahren: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:30 So 01.02.2015
Autor: Trikolon

Aufgabe
Gegeben ist das Mehrschritt-Verfahren: [mm] y_k+a_1y_{k-1}+a_2y_{k-2}=h(b_1f_{k-1}+b_2f_{k-2}) [/mm]

1. Wähle die Koeffizienten so, dass ein Verfahren mit der größt möglichen Ordnung entsteht.

2. Wende das in 1) erhaltene Verfahren auf das Problem y'=y, y(0)=1, y(1)=e mit h=1 an. Finde eine explizite Darstellung für [mm] y_k [/mm] und berechne [mm] |y(x_k)-y_k| [/mm]

Hallo,

also 1) war ja leicht. Es ist [mm] a_1=4, a_2=-5, b_1=4 [/mm] und [mm] b_2=2 [/mm]

zu 2)

Mit h=1 und y'=y=f ist [mm] y_k-7y_{k-2}=0 [/mm] also [mm] y_k=7y_{k-2}. [/mm]

Mit [mm] y_0=1, y_1=e [/mm] folgt [mm] y_2=7, y_3=7e, y_4=49, y_5=49e [/mm] usw.


Ich sehe hier aber keine explizite Darstellung für [mm] y_k... [/mm]

Nur [mm] y_{2k}=7^k [/mm] und [mm] y_{2k+1}=7^ke [/mm]

Das AWP hat die exakte Lösung [mm] y(x)=e^x [/mm]

Danke im Voraus!


        
Bezug
Mehrschrittverfahren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:46 So 01.02.2015
Autor: Trikolon

Hat jemand eine Idee,  wie man [mm] y_k [/mm] geschlossen darstellen kann?

Bezug
                
Bezug
Mehrschrittverfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 13:02 Mo 02.02.2015
Autor: leduart

Hallo
ich würde das als explizite Darstellung sehen, man sieht auch direkt dass es einfach [mm] e^2\approx [/mm] 7 erreicht  und damit den Fehler.
Gruß ledum

Bezug
                        
Bezug
Mehrschrittverfahren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:36 Mo 02.02.2015
Autor: Trikolon

Ok, danke.  Aber es ist ja nach einer expliziten Darstellung für [mm] y_k [/mm] gefragt. Also muss diese auch exakt angegeben werden.

Bezug
                                
Bezug
Mehrschrittverfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 15:42 Mo 02.02.2015
Autor: leduart

Hallo
deine Darstellung ist explizit im Gegensatz zu den Darstellungen, in denen noch andere [mm] y_{k-1} [/mm]  usw vorkommen. Explizit heisst, dass man nach Angabe von k  [mm] y_k [/mm] berechnen kann, du kannst mit deiner Formel [mm] y_{123} [/mm] direkt angeben!
Gruß leduart

Bezug
                                        
Bezug
Mehrschrittverfahren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:08 Mo 02.02.2015
Autor: Trikolon

Aber ich  habe ja sozusagen 2 verschiedene explizite Darstellungen.  Einmal für gerades und einmal für ungerades k...

Bezug
                                                
Bezug
Mehrschrittverfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 06:15 Mi 04.02.2015
Autor: meili

Eingabefehler: "\begin" und "\end" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo,

> Aber ich  habe ja sozusagen 2 verschiedene explizite
> Darstellungen.  Einmal für gerades und einmal für
> ungerades k...

Vorausgesetzt deine $a_i$ und $b_i$ sind richtig berechnet,
so gibt es eben eine explizite Darstellung von $y_k$ mit
Fallunterscheidung.

$y_k = \begin {cases} 7^{k-1}, & k \ \mbox{gerade} \\ 7^{k-2}e, & k \ \mbox{ungerade} \end{cases}   \qquad , k \ge 2$

Gruß
meili

Bezug
        
Bezug
Mehrschrittverfahren: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Di 03.02.2015
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]