matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenMenge bestimmter Matrizen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Matrizen" - Menge bestimmter Matrizen
Menge bestimmter Matrizen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Menge bestimmter Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:46 Sa 25.04.2009
Autor: T_sleeper

Aufgabe
Eine Matrix [mm] A_n=(a_{ij})\in M(n\times [/mm] n,K) wird durch die Gleichungen [mm] a_{i,i+1}=1 [/mm]   für [mm] 1\leq [/mm] i<n und [mm] a_{ij}=0 \forall [/mm] i,j mit [mm] j\neq [/mm] i+1 beschrieben.

(1) Man soll durch Gleichungen die Menge [mm] N\subset M(n\times [/mm] n,K) aller Matrizen B beschreiben, die sich als Linearkombination von Potenzen [mm] (A_n)^t [/mm] mit [mm] t\geq [/mm] 0 schreiben lassen und
(2) Beweise: N ist die Menge der Matrizen B mit [mm] A_nB=BA_n. [/mm]  

Hallo,

zu (1). Wenn ich mehrere [mm] (A_n)^t [/mm]  linear kombiniere, bekomme ich als Ergebnis immer obere Dreiecksmatrizen. Aber wie genau ist das mit den Gleichungen gemeint? Was muss ich da machen?
zu (2). Dafür brauche ich wahrscheinlich den ersten Teil oder?

        
Bezug
Menge bestimmter Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:22 So 26.04.2009
Autor: angela.h.b.


> Eine Matrix [mm]A_n=(a_{ij})\in M(n\times[/mm] n,K) wird durch die
> Gleichungen [mm]a_{i,i+1}=1[/mm]   für [mm]1\leq[/mm] i<n und [mm]a_{ij}=0 \forall[/mm]
> i,j mit [mm]j\neq[/mm] i+1 beschrieben.
>  
> (1) Man soll durch Gleichungen die Menge [mm]N\subset M(n\times[/mm]
> n,K) aller Matrizen B beschreiben, die sich als
> Linearkombination von Potenzen [mm](A_n)^t[/mm] mit [mm]t\geq[/mm] 0
> schreiben lassen und
>  (2) Beweise: N ist die Menge der Matrizen B mit [mm]A_nB=BA_n.[/mm]
> Hallo,
>  
> zu (1). Wenn ich mehrere [mm](A_n)^t[/mm]  linear kombiniere,
> bekomme ich als Ergebnis immer obere Dreiecksmatrizen.

Hallo,

bekommst Du irgendwelche Dreiecksmatrizen?
Wie sehen die Matrizen aus, die Du erhältst.

Danach erst kann man über die Gleichungen gut nachdenken.

> Aber
> wie genau ist das mit den Gleichungen gemeint?

Schau Dir den einführenden Aufgabentext an. Ich gehe davon aus, daß Du die Matrizen aus (1) in diesem Stile beschreiben sollst.

Gruß v. Angela



> Was muss ich
> da machen?
>  zu (2). Dafür brauche ich wahrscheinlich den ersten Teil
> oder?


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]