matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMengenlehreMengen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Mengenlehre" - Mengen
Mengen < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mengen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 21:48 Do 25.10.2012
Autor: neotron

Aufgabe
Hi an alle,
ich versuche eine Aufgabe zu loesen aber es funzt nicht,
ich muss zeigen, ob diese Aufgabe stimmt:
A [mm] \cup [/mm] (B [mm] \backslash [/mm] C) = (A [mm] \cup [/mm] B) [mm] \backslash [/mm] (A [mm] \cup [/mm] C)

Ich hoffe mir kann jemand detailiert erklären wie man das macht.

Sei y [mm] \in [/mm] A [mm] \cup [/mm] (B [mm] \backslash [/mm] C) => y [mm] \in [/mm] A oder y [mm] \in [/mm] (B [mm] \backslash [/mm] C).
Falls y [mm] \in [/mm] A => y [mm] \in [/mm] (A [mm] \cup [/mm] B) und y [mm] \in [/mm] (A [mm] \cup [/mm] C), aber (A [mm] \cup [/mm] B)  [mm] \backslash [/mm] (A [mm] \cup [/mm] C) das ist doch leere Menge ?? Oder nicht?? Ab hier hab ich Probleme und verstehe ich nicht was ich machen soll.
Viele Gruesse Neotron
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:56 Do 25.10.2012
Autor: tobit09

Hallo neotron und herzlich [willkommenmr]!


Du hast zwei Möglichkeiten: Entweder du beweist die Aussage. Oder du widerlegst sie, indem du als Gegenbeispiel Mengen A,B,C und D angibst, für die die Aussage nicht stimmt.

Ersteres hast du schon versucht und bist ins Stocken geraten. Versuche doch mal letzteres... ;-)


> Sei y [mm]\in[/mm] A [mm]\cup[/mm] (B [mm]\backslash[/mm] C) => y [mm]\in[/mm] A oder y [mm]\in[/mm] (B
> [mm]\backslash[/mm] C).
>  Falls y [mm]\in[/mm] A => y [mm]\in[/mm] (A [mm]\cup[/mm] B) und y [mm]\in[/mm] (A [mm]\cup[/mm] C),

Bis hierhin richtig!

> aber (A [mm]\cup[/mm] B)  [mm]\backslash[/mm] (A [mm]\cup[/mm] C) das ist doch leere
> Menge ?? Oder nicht??

I.A. ist [mm] $(A\cup B)\setminus(A\cup [/mm] C)$ nicht die leere Menge.


Viele Grüße
Tobias

Bezug
        
Bezug
Mengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:33 Do 25.10.2012
Autor: neotron

ich kriege Kopfschmerzen :(,
also wenn x [mm] \in [/mm] (A [mm] \cup [/mm] B) und gleichzeitig  x [mm] \in [/mm] (A [mm] \cup [/mm] C)
was bekomme ich denn (A [mm] \cup [/mm] B) ohne (A [mm] \cup [/mm] C) ??
Mit der Information kann ich sagen dass x elemend von A ist und x kein Element von B und auch kein element von C ist, das stimmt oder??

Bezug
                
Bezug
Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:53 Do 25.10.2012
Autor: tobit09


> also wenn x [mm]\in[/mm] (A [mm]\cup[/mm] B) und gleichzeitig  x [mm]\in[/mm] (A [mm]\cup[/mm]
> C)
>  was bekomme ich denn (A [mm]\cup[/mm] B) ohne (A [mm]\cup[/mm] C) ??

In der Tat gilt im Falle [mm] $x\in A\cup [/mm] C$, dass [mm] $x\not\in(A\cup B)\setminus(A\cup [/mm] C)$.

> Mit der Information kann ich sagen dass x elemend von A ist
> und x kein Element von B und auch kein element von C ist,
> das stimmt oder??  

Was meinst du mit "der Information"?


Ich würde dir wirklich raten, nach einem Gegenbeispiel zu suchen. Probier einfach irgendwelche konkreten Mengen für A, B, C und D aus. Die Chancen stehen gut, dass du so ein Gegenbeispiel findest.

Bezug
                        
Bezug
Mengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:21 Do 25.10.2012
Autor: neotron

Kannst du mir bitte erklaeren wie ich das loesen kann?? Also ich habe Schierigkeiten mit der Mengenoperationen. Es waere sehr nett von dir wenn du mir detalliert erklaerst. Bitte bitte bitte :)

Bezug
                                
Bezug
Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:28 Do 25.10.2012
Autor: tobit09


> Kannst du mir bitte erklaeren wie ich das loesen kann??
> Also ich habe Schierigkeiten mit der Mengenoperationen. Es
> waere sehr nett von dir wenn du mir detalliert erklaerst.

Ich schrieb:

> Ich würde dir wirklich raten, nach einem Gegenbeispiel zu suchen.
> Probier einfach irgendwelche konkreten Mengen für A, B, C und D aus.
> Die Chancen stehen gut, dass du so ein Gegenbeispiel findest.

Zumindest wirst du mir irgendwelche Beispiele für drei Mengen A, B und C?

Dann können wir $A [mm] \cup [/mm] (B [mm] \backslash [/mm] C)$ und $(A [mm] \cup [/mm] B) [mm] \backslash [/mm] (A [mm] \cup [/mm] C)$ für dieses Beispiel zu bestimmen versuchen.

Wenn wir dann feststellen, dass die beiden ermittelten Mengen verschieden sind, haben wir die Aussage aus der Aufgabenstellung widerlegt.

Bezug
                                        
Bezug
Mengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:56 Do 25.10.2012
Autor: neotron

ich habe grade sowas gemacht vieleicht isd das nicht falsch
sei x [mm] \in [/mm] A [mm] \cup [/mm] ( B \ C) =>
x [mm] \in [/mm] A oder x [mm] \in [/mm] ( B \ C)
1. Fall: x [mm] \in [/mm] A        (x [mm] \not\in [/mm] ( B \ C))
=> x [mm] \in [/mm] (A [mm] \cup [/mm] B) und x [mm] \cup [/mm] (A [mm] \cup [/mm] C)
=> x [mm] \not\in [/mm] (A [mm] \cup B)\(A \cup [/mm] C)
2.Fall: x [mm] \in [/mm] ( B \ C)      (x [mm] \not\in [/mm] A)
=> x [mm] \in [/mm] B und x [mm] \not\in [/mm] C
=> x [mm] \in [/mm] A [mm] \cup [/mm] B (wegen x [mm] \in [/mm] B) und x [mm] \not\in [/mm] A [mm] \cup [/mm] C
(wegen x [mm] \not\in [/mm] A und x [mm] \not\in [/mm] C)

A [mm] \cup [/mm] (B \ C) keine Teilmenge von (A cup B) \ (A cup C)

Mit der Gegenbsp. wiess ich net wie es funzt :(

Bezug
                                                
Bezug
Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:24 Fr 26.10.2012
Autor: tobit09


>   sei x [mm]\in[/mm] A [mm]\cup[/mm] ( B \ C) =>

> x [mm]\in[/mm] A oder x [mm]\in[/mm] ( B \ C)

Ja.

>  1. Fall: x [mm]\in[/mm] A        (x [mm]\not\in[/mm] ( B \ C))

Beachte: Es kann auch [mm] $x\in [/mm] A$ und [mm] $x\in(B\setminus [/mm] C)$ gleichzeitig gelten! In der Mathematik ist bei "oder" stets auch zugelassen, dass beides gilt.

>  => x [mm]\in[/mm] (A [mm]\cup[/mm] B) und x [mm]\cup[/mm] (A [mm]\cup[/mm] C)

>  => x [mm]\not\in[/mm] (A [mm]\cup B)\(A \cup[/mm] C)

Korrekt.

>  2.Fall: x [mm]\in[/mm] ( B \ C)      (x [mm]\not\in[/mm] A)
>  => x [mm]\in[/mm] B und x [mm]\not\in[/mm] C

> => x [mm]\in[/mm] A [mm]\cup[/mm] B (wegen x [mm]\in[/mm] B) und x [mm]\not\in[/mm] A [mm]\cup[/mm] C
>  (wegen x [mm]\not\in[/mm] A und x [mm]\not\in[/mm] C)

Auch korrekt.

> A [mm]\cup[/mm] (B \ C) keine Teilmenge von (A cup B) \ (A cup C)

Das hängt davon ab, ob [mm] $A=\emptyset$ [/mm] oder [mm] $A\not=\emptyset$ [/mm] gilt.


Falls du es lieber abstrakt magst: Wir wählen irgendeine Menge [mm] $A\not=\emptyset$ [/mm] (d.h. es existiert ein Element [mm] $x\in [/mm] A$) und B und C als beliebige Mengen.

Dann gilt (mit deiner Argumentation von oben): [mm] $x\in A\cup(B\setminus [/mm] C)$, aber wegen [mm] $x\in A\cup [/mm] C$ NICHT [mm] $x\in (A\cup B)\setminus(A\cup [/mm] C)$. Also können [mm] $A\cup(B\setminus [/mm] C)$ und [mm] $(A\cup B)\setminus(A\cup [/mm] C)$ nicht übereinstimmen.

  

> Mit der Gegenbsp. wiess ich net wie es funzt :(

Nehmen wir ziemlich willkürlich z.B. [mm] $A=\{1,2,3\}$, $B=\{2,4,5\}$ [/mm] und [mm] $C=\{1,2,5,6\}$. [/mm]

Dann gilt:

      [mm] $A\cup(B\setminus C)=\{1,2,3\}\cup(\{2,4,5\}\setminus\{1,2,5,6\})=\{1,2,3\}\cup\{4\}=\{1,2,3,4\}$, [/mm]

aber

     [mm] $(A\cup B)\setminus(A\cup C)=(\{1,2,3\}\cup\{2,4,5\})\setminus(\{1,2,3\}\cup\{1,2,5,6\})=\{1,2,3,4,5\}\setminus\{1,2,3,5,6\}=\{4\}$. [/mm]


Also in diesem Beispiel [mm] $A\cup(B\setminus C)\not=(A\cup B)\setminus(A\cup [/mm] C)$, womit die Allgemeingültigkeit für alle Mengen A, B und C  der Gleichung [mm] $A\cup(B\setminus C)=(A\cup B)\setminus(A\cup [/mm] C)$ widerlegt ist.

Bezug
                                                        
Bezug
Mengen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:29 Fr 26.10.2012
Autor: neotron

Dankeeee diiirrr, jetzt hab ich es verstanden

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]