matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesMengen skizzieren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Sonstiges" - Mengen skizzieren
Mengen skizzieren < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mengen skizzieren: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 12:27 Mi 27.11.2019
Autor: bondi

Aufgabe
Sei $ [mm] D=\{(x,y) \in \IR^2 | \medspace 1 < |x| + |y| \le 2 \} [/mm] $

Ist D i) offen, ii) abgeschlossen, iii) beschränkt, iv) kompakt?



Meine Lösung:

i) D ist 'nicht offen', denn bspw. $ ] [mm] \medspace 2-\epsilon, 2+\epsilon \medspace [/mm] [ [mm] \medspace \not\subseteq [/mm] D [mm] \medspace \forall \medspace \epsilon [/mm] > 0. $

ii) Aus i) weiß ich, dass D 'nicht offen' ist. Somit ist $ [mm] \IR \medspace \backslash\medspace [/mm] D $ 'offen'. Wenn das Komplement von D 'offen', so ist D 'abgeschlossen'.

An der Stelle widerspricht mir mein Kollege. Er sagt: Wenn D 'nicht offen', so ist das Komplement 'nicht abgeschlossen' und umgekehrt.

iii) D ist beschränkt, denn $ |x| [mm] \le2 \medspace \forall \medspace [/mm]  x [mm] \in [/mm] D. $

iv) D ist kompakt, weil abgeschlossen und beschränkt.

Bin gespannt auf Euer Statement :)

LG, bondi

        
Bezug
Mengen skizzieren: Antwort
Status: (Antwort) fertig Status 
Datum: 12:56 Mi 27.11.2019
Autor: Gonozal_IX

Hiho,

> Sei [mm]D=\{(x,y) \in \IR^2 | \medspace 1 < |x| + |y| \le 2 \}[/mm]

Halten wir fest: D ist also eine Teilmenge des [mm] $\IR^2$ [/mm] .

> i) D ist 'nicht offen', denn bspw. [mm]] \medspace 2-\epsilon, 2+\epsilon \medspace [ \medspace \not\subseteq D \medspace \forall \medspace \epsilon > 0.[/mm]

$] [mm] \medspace 2-\epsilon, 2+\epsilon \medspace [/mm] [$ ist offensichtlich ein Intervall, also eine Teilmenge von [mm] $\IR$, [/mm] D ist, wie oben erwähnt, eine Teilmenge des [mm] $\IR^2$. [/mm]

Dein Aufschrieb  [mm]] \medspace 2-\epsilon, 2+\epsilon \medspace [ \medspace \not\subseteq D [/mm] macht also gar keinen Sinn.

Deine Idee dahinter aber vllt. schon.
Du willst also einen gewählten Punkt nehmen und zeigen, dass in jeder [mm] $\varepsilon$-Umgebung [/mm] um den Punkt einer liegt, der nicht in D liegt.

Dann schreibe das doch so auf!!
Sage, welchen Punkt du betrachtest, nimm eine beliebige [mm] $\varepsilon$-Umgebung [/mm] darum und zeige, dass dort ein Punkt drin liegt, der nicht in D liegt, indem du die Bedingung von D nachrechnest.

> ii) Aus i) weiß ich, dass D 'nicht offen' ist.

Wenn du das korrekt zeigst: Ja, D ist nicht offen.

> Somit ist [mm]\IR \medspace \backslash\medspace D[/mm] 'offen'. Wenn das
> Komplement von D 'offen', so ist D 'abgeschlossen'.
>  
> An der Stelle widerspricht mir mein Kollege. Er sagt: Wenn
> D 'nicht offen', so ist das Komplement 'nicht
> abgeschlossen' und umgekehrt.

Dein Kollege hat recht.
Machen wir es einfach: Wir bleiben mal in [mm] $\IR$ [/mm] und betrachten das nicht-offene Intervall $[0,1[$.
Das Komplement dazu ist [mm] $\IR\setminus[0,1[\quad [/mm] = [mm] \quad]-\infty,0[ \;\cup\; [1,\infty[$ [/mm]
Siehst du selbst, dass das Komplement ebenfalls nicht offen ist? (Tipp: Leg mal eine [mm] $\varepsilon$-Umgebung [/mm] um $1 [mm] \in \IR\setminus [/mm] [0,1[$

"offen" und "abgeschlossen" sind nicht zwei gegensätzliche Dinge.
Mengen können sowohl offen als auch abgeschlossen sein (z.B. [mm] $\IR$) [/mm] und andere sowohl nicht-offen als auch nicht-abgeschlossen (z.B. $[0,1[$ in [mm] $\IR$) [/mm]

Das Komplement einer
- offenen Menge ist dann abgeschlossen
- abgeschlossenen Menge ist dann offen
- nicht-offenen Menge ist dann nicht-abeschlossen
- nicht-abeschlossenen Menge ist dann nicht-offen

> iii) D ist beschränkt, denn [mm]|x| \le2 \medspace \forall \medspace x \in D.[/mm]

Der Aufschrieb ist grottig. Du betrachtest doch Elemente im [mm] $\IR^2$. [/mm]
Zwar schreibt man später nur noch: "Sei [mm] $x\in\IR^2$, [/mm] wenn man weiß, was man tut, das bezweilfe ich aber bei dir.
Daher beantworte mal die Frage: Was soll denn $|x|$ sein für ein Element aus [mm] $\IR^2$? [/mm]

> iv) D ist kompakt, weil abgeschlossen und beschränkt.

netter Versuch… den Satz brauchst du nachher zwar, aber das machen wir mal nochmal, wenn i), ii) und iii) sitzen.

Gruß,
Gono

Bezug
        
Bezug
Mengen skizzieren: Antwort
Status: (Antwort) fertig Status 
Datum: 13:46 Mi 27.11.2019
Autor: fred97

Gono hat ja schon alles Wichtige erzählt und einiges korrigiert.

Zwei Bemerkungen von mir.

1. Ist $ M [mm] \subset \IR^n$, [/mm] so gilt

M ist sowohl offen als auch abgeschlossen [mm] \gdw [/mm] $M= [mm] \emptyset$ [/mm] oder $M= [mm] \IR^n.$ [/mm]

2. Manchmal gehts mit Folgen einfacher. Ist $ M [mm] \subset \IR^n$, [/mm] so gilt: M ist abgeschlossen [mm] \gdw [/mm] der Limes jeder konvergenten Folge in M gehört zu M.

Damit aus gestattet schauen wir uns Deine Menge D und ihr Komplement $C:= [mm] \IR^2 \setminus [/mm] D$ an.

Wir setzen [mm] $u_n:=(1+\frac{1}{n}, [/mm] 0)$. Dann ist [mm] $(u_n)$ [/mm] eine konvergente Folge in D mit [mm] $\lim_{n \to \infty}u_n=(1,0)$. [/mm] Nun ist $(1,0) [mm] \notin [/mm] D$, also ist D nicht abgeschlossen.

Setzen wir  [mm] $v_n:=(2+\frac{1}{n}, [/mm] 0)$. Dann ist [mm] $(v_n)$ [/mm] eine konvergente Folge in  C mit [mm] $\lim_{n \to \infty}v_n=(2,0)$. [/mm] Nun ist $(2,0) [mm] \notin [/mm] C$, also ist C nicht abgeschlossen.  Damit ist D nicht offen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]