matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Mengen skizzieren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Analysis des R1" - Mengen skizzieren
Mengen skizzieren < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mengen skizzieren: Korrektur
Status: (Frage) beantwortet Status 
Datum: 10:35 Di 19.11.2013
Autor: Bindl

Aufgabe 1
Skizziere die Menge in ein Koordinatensystem:
(x,y) [mm] \in \IR [/mm] \ {0} x [mm] \IR [/mm] : [mm] \bruch{5x^2 - 5}{x - 1} \le [/mm] 2y - |3y - 15|


Aufgabe 2
(x,y) [mm] \in \IR [/mm] x [mm] \IR: 2x^2 [/mm] - 2x - 4 = 0, [mm] x^2 [/mm] + [mm] y^2 [/mm] = 4


Hi zusammen,

Aufgabe 1)
zunächst weiß ich nicht so recht was"{0} x [mm] \IR" [/mm] bedeutet.

Hier mein Lösungvorschlag:
für Betrag [mm] \ge [/mm] 0: y = [mm] -(\bruch{5x^2 - 5}{x - 1} [/mm] - 15)
für Betrag < 0: y = [mm] \bruch{5x^2 - 5}{5x - 5} [/mm] + 3
Dann hab ich die beiden Funktion in ein Koordinatensystem skizziert

Aufgabe 2)
Mein Lösungsvorschlag:
Mit [mm] 2x^2 [/mm] - 2x - 4 = 0 bekomme ich die Schnittpunkte mit der x-Achse.
Tiefpunkt berechnen:
f'(x) = 4x - 2 = 0   -> x = 1/2              f''(x) = 4  also größer 0
Dann f(1/2) = -9/2
Bedeutet das die Menge die Funktion selbst ("der Strich") ist ?
Ich habe die Angabe [mm] x^2 [/mm] + [mm] y^2 [/mm] = 4 gar nicht verwendet, was mich etwas unsicher macht.

Danke schonmal für eure Hilfe im voraus

        
Bezug
Mengen skizzieren: Antwort
Status: (Antwort) fertig Status 
Datum: 11:51 Di 19.11.2013
Autor: meili

Hallo,

> Skizziere die Menge in ein Koordinatensystem:
>  (x,y) [mm]\in \IR[/mm] \ {0} x [mm]\IR[/mm] : [mm]\bruch{5x^2 - 5}{x - 1} \le[/mm] 2y
> - |3y - 15|
>  
> (x,y) [mm]\in \IR[/mm] x [mm]\IR: 2x^2[/mm] - 2x - 4 = 0, [mm]x^2[/mm] + [mm]y^2[/mm] = 4
>  
> Hi zusammen,
>  
> Aufgabe 1)
>  zunächst weiß ich nicht so recht was"{0} x [mm]\IR"[/mm]
> bedeutet.

Es ist [mm] $\IR \setminus \{0\} \times \IR$ [/mm] gemeint.
Also $x [mm] \in \IR \setminus \{0\}$ [/mm] und $y [mm] \in \IR$. [/mm]
(x reelle Zahl, aber nicht Null)
Für diese Aufgabe wäre aber $(x,y) [mm] \in \IR \setminus \{1\} \times \IR$ [/mm]
sinnvoller, denn damit ist der Nenner x-1 [mm] $\not=$ [/mm] 0.

>  
> Hier mein Lösungvorschlag:
>  für Betrag [mm]\ge[/mm] 0: y = [mm]-(\bruch{5x^2 - 5}{x - 1}[/mm] - 15)
>  für Betrag < 0: y = [mm]\bruch{5x^2 - 5}{5x - 5}[/mm] + 3
>  Dann hab ich die beiden Funktion in ein Koordinatensystem
> skizziert

Ja, Fallunterscheidung für die Behandlung des Betrags ist gut.
Zum zeichnen ist es auch sinnvoll mit Gleichung(en) zu arbeiten.
Man bekommt, damit den "Rand".  Um die Menge zu finden, muss man aber
die Ungleichung(en) berücksichtigen.
Noch ein Tipp:
Der Zähler lässt sich faktorisieren und dann mit dem Nenner kürzen.

>  
> Aufgabe 2)
>  Mein Lösungsvorschlag:
>  Mit [mm]2x^2[/mm] - 2x - 4 = 0 bekomme ich die Schnittpunkte mit
> der x-Achse.

[ok]
Die beiden x-Werte, die du da heraus bekommst, erfüllen die Gleichung
[mm] $2x^2-2x-4 [/mm] = 0$

>  Tiefpunkt berechnen:
>  f'(x) = 4x - 2 = 0   -> x = 1/2              f''(x) = 4  

> also größer 0
>  Dann f(1/2) = -9/2
>  Bedeutet das die Menge die Funktion selbst ("der Strich")
> ist ?

überflüssig

>  Ich habe die Angabe [mm]x^2[/mm] + [mm]y^2[/mm] = 4 gar nicht verwendet, was
> mich etwas unsicher macht.

Die beiden oben erhaltenen x-Werte nacheinander in die Gleichung [mm] $x^2 [/mm] + [mm] y^2 [/mm] = 4$
einsetzen, und damit die dazugehörigen y-Werte berechnen.

Die Menge aus Aufgabe 2 besteht aus genau 2 Punkten.

>  
> Danke schonmal für eure Hilfe im voraus

Gruß
meili

Bezug
                
Bezug
Mengen skizzieren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:36 Di 19.11.2013
Autor: Bindl

Hi,

danke für die Antwort.
Das Fakorisieren lässt gerade die zweite Lösung wahrlich etwas schöner aussehen.
Und danke für den Tipp bei Aufgabe 2. Wusste mit dem x²+y²=4 wirklich nichts anzufangen.

Danke nochmal für die Hilfe

Bezug
                
Bezug
Mengen skizzieren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:01 Di 19.11.2013
Autor: abakus


> Hallo,

>

> > Skizziere die Menge in ein Koordinatensystem:
> > (x,y) [mm]\in \IR[/mm] \ {0} x [mm]\IR[/mm] : [mm]\bruch{5x^2 - 5}{x - 1} \le[/mm]
> 2y
> > - |3y - 15|
> >
> > (x,y) [mm]\in \IR[/mm] x [mm]\IR: 2x^2[/mm] - 2x - 4 = 0, [mm]x^2[/mm] + [mm]y^2[/mm] = 4
> >
> > Hi zusammen,
> >
> > Aufgabe 1)
> > zunächst weiß ich nicht so recht was"{0} x [mm]\IR"[/mm]
> > bedeutet.
> Es ist [mm]\IR \setminus \{0\} \times \IR[/mm] gemeint.
> Also [mm]x \in \IR \setminus \{0\}[/mm] und [mm]y \in \IR[/mm].
> (x reelle
> Zahl, aber nicht Null)
> Für diese Aufgabe wäre aber [mm](x,y) \in \IR \setminus \{1\} \times \IR[/mm]

>

> sinnvoller, denn damit ist der Nenner x-1 [mm]\not=[/mm] 0.

>

> >
> > Hier mein Lösungvorschlag:
> > für Betrag [mm]\ge[/mm] 0: y = [mm]-(\bruch{5x^2 - 5}{x - 1}[/mm] - 15)
> > für Betrag < 0: y = [mm]\bruch{5x^2 - 5}{5x - 5}[/mm] + 3
> > Dann hab ich die beiden Funktion in ein
> Koordinatensystem
> > skizziert

Hallo,
da du hier mit keiner Silbe die mögliche Termvereinfachung erwähnt hast, frage ich vorsichtshalber mal nach:
Woher weißt du, wie der Graph von y = [mm]-(\bruch{5x^2 - 5}{x - 1}[/mm]- 15) aussieht?
Gruß Abakus

Bezug
                        
Bezug
Mengen skizzieren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:42 Mi 20.11.2013
Autor: Bindl

Hi,

da hab ich einen Schreibfehler.
y [mm] \le -(\bruch{5x² - 5}{x - 1} [/mm]

Ich habe einfach nach y aufgelöst

Bezug
                
Bezug
Mengen skizzieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:13 Mi 20.11.2013
Autor: Bindl

Zu Aufgabe 2)
Ich habe die x-Werte jetzt bei x² + y² = 4 eingesetzt
für x = 2 bekommen ich y = 0
für x = -1 bekomme ich y = [mm] \wurzel{3} [/mm]

Heißt dies das die Menge aus den Punkte P1(2,0) & [mm] P2(-1,\wurzel{3}) [/mm] ?

Bezug
                        
Bezug
Mengen skizzieren: Antwort
Status: (Antwort) fertig Status 
Datum: 10:21 Mi 20.11.2013
Autor: Diophant

Hallo,

> Zu Aufgabe 2)
> Ich habe die x-Werte jetzt bei x² + y² = 4 eingesetzt
> für x = 2 bekommen ich y = 0
> für x = -1 bekomme ich y = [mm]\wurzel{3}[/mm]

>

> Heißt dies das die Menge aus den Punkte P1(2,0) &
> [mm]P2(-1,\wurzel{3})[/mm] ?

Nein, da ist dir ein Punkt sozusagen durch die Lappen gegangen. Bedenke, dass man bei der Auflösung von

[mm] x^2+y^2=4 [/mm]

nach y (nach x natürlich ebenso) eine Fallunterscheidung

[mm] y=\pm\wurzel{4-x^2} [/mm]

vornehmen muss, da man die Quadratwurzel zieht!

Als dritten Punkt bekommst du somit noch [mm] P_3\left(-1,-\wurzel{3}\right). [/mm]


Gruß, Diophant

Bezug
                                
Bezug
Mengen skizzieren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:16 Mi 20.11.2013
Autor: Bindl

Danke für den Hinweis.

Habe ich wohl, wie so häufig, etwas unsauber gearbeitet

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]