Mengen/teilmengen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:24 Mo 31.10.2005 | Autor: | Mikke |
also meine Frage:
X und Y sind Mengen mit der Abbildung X--> Y.
welche Eigenschaft muss man jetzt für f fordern damit A = [mm] f^{-1}(f(A)) [/mm] für alle teilmengen A [mm] \subset [/mm] X.
also, dass A ja teilmenge von [mm] f^{-1}(f(A)) [/mm] ist ja klar. aber was brauch ich für Gleichheit?
Meine idee wäre ja die forderung dass f injektiv ist. aber wie kann ich das beweisen.
wäre für hilfe sehr dankbar.
mfg mikke
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:33 Mo 31.10.2005 | Autor: | Stefan |
Hallo!
Genau, dies gilt genau dann, wenn $f$ injektiv ist.
Zunächst sei $f$ injektiv und $A [mm] \subset [/mm] X$ beliebig. Es sei $x [mm] \in f^{-1}(f(A))$ [/mm] beliebig. Dann gibt es ein $a [mm] \in [/mm] A$ mit $f(x)=f(a)$. Da $f$ injektiv ist, folgt $x=a [mm] \in [/mm] A$. Daraus folgt:$ [mm] f^{-1}(f(A)) \subset [/mm] A$.
Umgekehrt gelte: [mm] $A=f^{-1}(f(A))$. [/mm] Es seien $x,y [mm] \in [/mm] X$ mit $f(x)=f(y)$ bleibig gewählt. Dann gilt: [mm] $x\in f^{-1}(f(y))$, [/mm] also (für $A = [mm] \{y\}$) [/mm] mit $x [mm] \in \{y\}$, [/mm] also: $x=y$. Dies bedeutet, dass $f$ injektiv ist.
Liebe Grüße
Stefan
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 08:48 Di 01.11.2005 | Autor: | AgentLie |
> [mm]x\in f^{-1}(f(y))[/mm],
> also (für [mm]A = \{y\}[/mm]) mit [mm]x \in \{y\}[/mm], also: [mm]x=y[/mm]. Dies
> bedeutet, dass [mm]f[/mm] injektiv ist.
Hallo, ich verstehe die Formulierung am Ende des Beweises mit der Mengenklammer um y nicht. Könntest du das bitte noch etwas ausführen. Könnte man nicht einfach noch umgekehrt [mm] y\in f^{-1}(f(x)) [/mm] schreiben und somit beweisen, dass x=y?
Bis dann!
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:23 Di 01.11.2005 | Autor: | Herby |
Hallo AgentLie,
> > [mm]x\in f^{-1}(f(y))[/mm],
> > also (für [mm]A = \{y\}[/mm]) mit [mm]x \in \{y\}[/mm], also: [mm]x=y[/mm]. Dies
> > bedeutet, dass [mm]f[/mm] injektiv ist.
>
> Hallo, ich verstehe die Formulierung am Ende des Beweises
> mit der Mengenklammer um y nicht. Könntest du das bitte
> noch etwas ausführen.
ALso, ich verstehe das so:
1. Du hast eine Menge A, die aus dem Element y besteht.
2. Du nimmst jetzt ein beliebiges Element x aus dem Vorrat der vorhandenen Elemente
3. Dann muss ja offensichtlich x=y sein, da du nur ein Element in der Menge hast
> Könnte man nicht einfach noch
> umgekehrt [mm]y\in f^{-1}(f(x))[/mm] schreiben und somit beweisen,
> dass x=y?
>
Das war doch umgekehrt
lg
Herby
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:30 Di 01.11.2005 | Autor: | AgentLie |
> Hallo AgentLie,
>
> > > [mm]x\in f^{-1}(f(y))[/mm],
> > > also (für [mm]A = \{y\}[/mm]) mit [mm]x \in \{y\}[/mm], also: [mm]x=y[/mm]. Dies
> > > bedeutet, dass [mm]f[/mm] injektiv ist.
> >
> > Hallo, ich verstehe die Formulierung am Ende des Beweises
> > mit der Mengenklammer um y nicht. Könntest du das bitte
> > noch etwas ausführen.
>
> ALso, ich verstehe das so:
>
> 1. Du hast eine Menge A, die aus dem Element y besteht.
> 2. Du nimmst jetzt ein beliebiges Element x aus dem Vorrat
> der vorhandenen Elemente
> 3. Dann muss ja offensichtlich x=y sein, da du nur ein
> Element in der Menge hast
>
> > Könnte man nicht einfach noch
> > umgekehrt [mm]y\in f^{-1}(f(x))[/mm] schreiben und somit beweisen,
> > dass x=y?
> >
>
> Das war doch umgekehrt
>
>
> lg
> Herby
>
Vielen Dank. Die Formulierung war mir nur nicht ganz klar. Der Umgang mit Mengenklammern und allgemein Mengenlehre wird in der Schule viel zu wenig behandelt. Da sind die Formalia schon sehr ungewohnt. Also, nochmal vielen Dank für die Erklärung.
|
|
|
|