matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDiskrete MathematikMengen und partielle Ordnungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Diskrete Mathematik" - Mengen und partielle Ordnungen
Mengen und partielle Ordnungen < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mengen und partielle Ordnungen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:59 Do 13.12.2018
Autor: katze44

Aufgabe
Sei M die Menge aller Worte der Länge 1 bis 3 über dem Alphabet {x,y}. Welche der folgenden Relationen sind partielle Ordnungen? Falls die Relation eine partielle Ordnung ist, zeichnen Sie das Hasse-Diagramm. Falls nicht, bilden Sie die transitive und reflexive Hülle und zeichnen dann das Hasse-Diagramm.
a) (a,b) [mm] \in R_{1} [/mm] genau dann, wenn a ein Präfix(d.h "Anfangskette") von b ist.
b) (a,b) [mm] \in R_{2} [/mm] genau dann, wenn a ein Suffix(d.h "Endkette") von b ist.
c) (a,b) [mm] \in R_{3} [/mm] genau dann, wenn a ein Präfix oder ein Suffix von b ist.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Kann mir bitte jemanden helfen zu verstehen, wie ich die Fragen beantworten kann? Was wurde hier gemeint?
Danke!

        
Bezug
Mengen und partielle Ordnungen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:42 Fr 14.12.2018
Autor: meili

Hallo katze44

und

[willkommenmr]

Leider weis ich nicht, was du schon über []Formale Sprachen, []Relationen,
speziell []Ordnungsrelationen (partielle Ordnungen), []transitive Hülle,
[]reflexive Hülle und []Hasse-Diagramme weist.
Aber nützlich wäre das alles für diese Aufgabe.

Zuerst könnest du die Menge M aufschreiben. Da das Alphabet nur aus zwei
Buchstaben (x und y) besteht und die Menge M aus den Worten der Länge 1 bis 3
besteht, ist das noch übersichtlich und machbar.

Dann solltest du dir einen Überblick über die Relationen [mm] $R_1$, $R_2$ [/mm] und
[mm] $R_3$ [/mm] verschaffen. Da die Relationen Teilmengen von $M [mm] \times [/mm] M$ sind,
lassen sie sich jeweils vollstängig aufschreiben. Ist vielleicht aber nicht nötig.

Dann prüfen, ob die jeweilige Relation reflexiv, antisymmetrisch und transitiv ist.

Wenn bei dir noch Fragen auftauchen, kannst du wieder nachfragen und aufschreiben
wie weit du gekommen bist.

> Sei M die Menge aller Worte der Länge 1 bis 3 über dem
> Alphabet {x,y}. Welche der folgenden Relationen sind
> partielle Ordnungen? Falls die Relation eine partielle
> Ordnung ist, zeichnen Sie das Hasse-Diagramm. Falls nicht,
> bilden Sie die transitive und reflexive Hülle und zeichnen
> dann das Hasse-Diagramm.
>  a) (a,b) [mm]\in R_{1}[/mm] genau dann, wenn a ein Präfix(d.h
> "Anfangskette") von b ist.
>  b) (a,b) [mm]\in R_{2}[/mm] genau dann, wenn a ein Suffix(d.h
> "Endkette") von b ist.
>  c) (a,b) [mm]\in R_{3}[/mm] genau dann, wenn a ein Präfix oder ein
> Suffix von b ist.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Kann mir bitte jemanden helfen zu verstehen, wie ich die
> Fragen beantworten kann? Was wurde hier gemeint?
>  Danke!

Gruß
meili

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 1d 9h 36m 5. mana
FunkAna/Ungleichung
Status vor 1d 20h 13m 3. mana
S8-10/Flächeninhalt
Status vor 1d 21h 24m 3. kloeten
S8-10/Formel umstellen
Status vor 3d 5. Josef
UFina/Kalkulation Entwürfen
Status vor 3d 5. Pacapear
UAnaR1/Betragsungleichung
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]