Mengenbeweis(Verknüpfung) < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Hallo!
Ich habe mit folgender Aufgabe ein Problem:
Es sei f: X [mm] \to [/mm] Y eine Abbildung zwischen zwei nivht-leeren Mengen X,Y. Zeige, dass f genau dann injektiv ist, wenn es eine Abbildung h: Y [mm] \to [/mm] X gibt, so dass h [mm] \circ f=id_{x} [/mm] gilt.
Man muss hier beweisen, dass die Funktion f eine Umkehrfunktion(g) besitzen muss um durch die Verknüpfung der beiden Funktionen auf die Identität zu kommen, oder denke ich da in die falsche Richtung? Falls ich richtig denke, weiss ich allerdings immer noch nicht, wie ich das am Besten hinschreiben soll.
Wie beweise ich denn am besten, dass bzw. ob eine konkrete Funktion injektiv bzw. surjektiv ist?
Ich hoffe auf Eure Hilfe.Danke schon einmal; dies ist echt ein klasse Forum.
|
|
|
|
Hallo!
Nein, in diesem Fall suchst Du keine Umkehrfunktion... eine solche gibt es nämlich nur, wenn das $f$ bijektiv ist. Das angegebene $h$ ist gewissermaßen nur eine Umkehrung in eine Richtung.
Am besten gehst Du von den Definitionen aus: eine Abbildung $f$ heißt injektiv, falls für $x, x' [mm] \in [/mm] X$ mit $f(x) = f(x')$ gilt: $x = x'$.
Kannst Du diese Eigenschaft beweisen, wenn Du die Existenz einer Abbildung $h$ annimmst, wie sie in der Aufgabe steht? Und kannst Du umgekehrt, falls die Injektivität von $f$ vorausgesetzt ist, Dir eine solche Abbildung $h$ einfach definieren? Dabei musst Du beachten, dass $f$ nicht surjektiv zu sein braucht, also gibt es nicht zu jedem $y [mm] \in [/mm] Y$ ein Urbild unter $f$!
Viel Erfolg!
Lars
|
|
|
|