matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMengenlehreMengenlehre
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Mengenlehre" - Mengenlehre
Mengenlehre < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mengenlehre: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:52 Di 17.07.2018
Autor: meister_quitte

Aufgabe
Seien X, Y beliebige nichtleere Mengen. Man beweise oder widerlege:

a) Für alle  [mm] $A_1, A_2 \subseteq [/mm] X$ und [mm] $B_1, B_2 \subseteq [/mm] Y$ gilt

[mm] $\left( A_1 \times B_1 \right) \cap \left( A_2 \times B_2 \right) [/mm] = [mm] \left( A_1 \cap B_1 \right) \times \left( A_2 \cap B_2 \right)$ [/mm]

b) Für alle  [mm] $A_1, A_2 \subseteq [/mm] X$ und [mm] $B_1, B_2 \subseteq [/mm] Y$ gilt

[mm] $\left( A_1 \times B_1 \right) \cup \left( A_2 \times B_2 \right) [/mm] = [mm] \left( A_1 \cup B_1 \right) \times \left( A_2 \cup B_2 \right)$ [/mm]

Hallo Freunde der Mathematik,

ich wollte wissen, ob mein Gerechnetes so stimmt.

Vielen Dank schon mal im Voraus.

Schöne Grüße

Christoph

Vor.: X, Y beliebige nichtleere Mengen,  [mm] $A_1, A_2 \subseteq [/mm] X$ und [mm] $B_1, B_2 \subseteq [/mm] Y$

Beh.: a) [mm] $\left( A_1 \times B_1 \right) \cap \left( A_2 \times B_2 \right) [/mm] = [mm] \left( A_1 \cap A_2 \right) \times \left( B_1 \cap B_2 \right)$ [/mm]

b) [mm] $\left( A_1 \times B_1 \right) \cup \left( A_2 \times B_2 \right) [/mm] = [mm] \left( A_1 \cup A_2 \right) \times \left( B_1 \cup B_2 \right)$ [/mm]

Bew.: a) [mm] $\left( x,y \right) \in $\left( A_1 \times B_1 \right) \cap \left( A_2 \times B_2 \right) \iff \left( x,y \right) \in \left( A_1 \times B_1 \right) \wedge \left( x,y \right) \in \left( A_2 \times B_2 \right) \iff [/mm] x [mm] \in A_1 \wedge [/mm] x [mm] \in A_2\wedge [/mm] y [mm] \in B_1 \wedge [/mm] y [mm] \in B_2 \iff [/mm] x [mm] \in \left( A_1 \cap A_2 \right) \wedge [/mm] y [mm] \in \left( B_1 \cap B_2 \right) \iff \left( x,y \right) \in \left( A_1 \cap A_2 \right) \times \left( B_1 \cap B_2 \right)$ [/mm]

b) [mm] $\left( x,y \right) \in $\left( A_1 \times B_1 \right) \cup \left( A_2 \times B_2 \right) \iff \left( x,y \right) \in \left( A_1 \times B_1 \right) \vee \left( x,y \right) \in \left( A_2 \times B_2 \right) \iff \left( x \in A_1 \wedge y \in B_1 \right) \vee \left( x \in A_2 \wedge y \in B_2 \right) \not\gdw \left( x \in A_1 \vee x \in A_2 \right) \wedge \left( y \in B_1 \vee y \in B_2 \right) \iff \left( x,y \right) \in \left( A_1 \cup A_2 \right) \times \left(B_1 \cup B_2 \right)$ [/mm] (Wds.)

        
Bezug
Mengenlehre: Antwort
Status: (Antwort) fertig Status 
Datum: 17:41 Di 17.07.2018
Autor: Fulla

Hallo Christoph,

du hast dich zwar bei der Aufgabenstellung oben vertippt, aber an deiner Lösung habe ich nichts auszusetzen.
Bei b) könntest du evtl. das "[mm]\not\Leftrightarrow[/mm]" etwas erläutern, bzw. an der Stelle "[mm]\Longrightarrow[/mm]" schreiben und begründen, warum die Rückrichtung nicht gilt.
(Siehe dazu auch []hier.)

Lieben Gruß,
Fulla

Bezug
                
Bezug
Mengenlehre: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:24 Di 17.07.2018
Autor: meister_quitte

Hallo Fulla,

laut deinem Link gilt. dass bei b) die linke Seite die Rechte enthält, aber nicht umgekehrt. Deswegen lässt zwischen und und oder nicht tauschen, weil sonst die Rechenregel verletzt würde. Ich hoffe ich habe das richtig erklärt.

Liebe Grüße

Christoph

Bezug
                        
Bezug
Mengenlehre: Antwort
Status: (Antwort) fertig Status 
Datum: 20:16 Di 17.07.2018
Autor: Fulla


> Hallo Fulla,

>

> laut deinem Link gilt. dass bei b) die linke Seite die
> Rechte enthält, aber nicht umgekehrt. Deswegen lässt
> zwischen und und oder nicht tauschen, weil sonst die

Da fehlt doch was...?

> Rechenregel verletzt würde. Ich hoffe ich habe das richtig
> erklärt.

Auf Wikipedia ist die Reihenfolge genau anders herum, als in deiner Aufgabe...

Bezug
                                
Bezug
Mengenlehre: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:58 Mo 30.07.2018
Autor: meister_quitte

Alles klar. Danke für deine Hilfe.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 35m 19. Gonozal_IX
UTopoGeo/indirekter Beweis
Status vor 3h 17m 16. donp
VK60Ana/Übungsserie 2, Aufgabe 3
Status vor 21h 27m 8. sancho1980
MSons/Abschätzung Kreisfunktionen
Status vor 22h 15m 3. Chris84
Mathematica/Mathematica
Status vor 1d 1h 54m 14. fred97
UAnaRn/Hinreich. Potentialkriterium
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]