matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMengenlehreMengenverknüpfungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Mengenlehre" - Mengenverknüpfungen
Mengenverknüpfungen < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mengenverknüpfungen: Tipp
Status: (Frage) beantwortet Status 
Datum: 14:15 Mo 29.10.2007
Autor: Betman

Aufgabe
Seien M,N,T Mengen. Zeigen Sie:
[mm] M\cap (N\cup M)=M\cup (N\cap [/mm] M)=M

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich "wandel" den ersten teil derMengenverknüpfung erstmal in aussagen um, so dass
[mm] (x\in M\wedge x\in N)\vee (x\in M\wedge x\in [/mm] M)

da [mm] (x\in M\wedge x\in [/mm] M) nur wahr ist für [mm] x\in [/mm] M kann ich nun auch schreiben
[mm] (x\in M\wedge x\in N)\vee x\in [/mm] M
was wiederum zurück zu Mengen [mm] M\cup (N\cap [/mm] M) ergibt... aber wie komme ich dann auf den letzten Teil der Verknüpfung???
vielen dank schonmal

        
Bezug
Mengenverknüpfungen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:22 Di 30.10.2007
Autor: Somebody


> Seien M,N,T Mengen. Zeigen Sie:
>  [mm]M\cap (N\cup M)=M\cup (N\cap M)=M[/mm]
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Ich "wandel" den ersten teil derMengenverknüpfung erstmal
> in aussagen um,

Dieser Weg ist zwar möglich, aber nach meinem Gefühl wohl eher nicht im Sinne des Aufgabenstellers. Ich empfehle Dir eher den Beweis über eine Anwendung folgender Beziehungen zwischen Vereinigung bzw. Durchschnitt und Inklusion für beliebige Mengen $A,B,C$ zu führen:

[mm]A,B\subseteq C\Rightarrow A\cup B\subseteq C[/mm]

[mm]C\subseteq A \Rightarrow C\subseteq A\cup B[/mm]


[mm]C\subseteq A,B \Rightarrow C\subseteq A\cap B[/mm]

[mm]A\subseteq C \Rightarrow A\cap B\subseteq C[/mm]


Diese Beziehungen sind unmittelbar einleuchtend, wenn man sich klar macht, dass [mm] $A\cup [/mm] B$ die kleinste obere Schranke bzw. [mm] $A\cap [/mm] B$ die grösste untere Schranke von $A$ und $B$ bezüglich der Inklusions(partial)ordnung [mm] $\subseteq$ [/mm] ist.

Aufgrund dieser Beziehungen ist z.B. leicht zu sehen, dass [mm] $M\subseteq M\cap (N\cup M)\subseteq [/mm] M$, also insgesamt [mm] $M\cap (N\cup [/mm] M)=M$.
Analog, dass [mm] $M\subseteq M\cup (N\cap M)\subseteq [/mm] M$, also ingesamt wieder [mm] $M\cup (N\cap [/mm] M)=M$.
Damit wäre dann die gesamte Aussage [mm] $M\cap (N\cup M)=M\cup (N\cap [/mm] M)=M$ bewiesen.

Bezug
                
Bezug
Mengenverknüpfungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:22 Di 30.10.2007
Autor: Betman

alles klar, das leuchtet schon ein...
vielen dank auf jeden fall!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]