matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMaßtheorieMessbarkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Maßtheorie" - Messbarkeit
Messbarkeit < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Messbarkeit: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 08:13 Mo 14.04.2008
Autor: blascowitz

Aufgabe
Wir definieren das innere Lebesgue Maß einer beschränkten Teilmenge A  R durch
[mm] \lambda(A) :=\lambda* [/mm] (I) − [mm] \lambda*(I [/mm] \ A)
wobei I ein Intervall ist der A enthält.

eine beschränkte Menge A [mm] \subset [/mm]  R ist genau dann Lebesgue meßbar [mm] wenn\lambda*(A)=\lambda*(A). [/mm]

Guten Morgen. Wir haben von unserem Übungsleiter einen Tipp bekommen den ich nich verstehe:Benützen Sie dass A beschränkt ist. Dann, sei I=[c,d] ein beliebiges beschränktes Intervall. Dann existiert J=[a,b] sodass A und I Teilmengen von J sind.
-Benützen Sie (und Zeigen Sie) auch dass das innere Lebesgue Mass kleiner als das äussere Lebesgue Mass.
Am Ende, sollen Sie erhalten dass das innere Lebesgue Mass von I [mm] \cap [/mm] A gleich das äussere Lebesgue Mass von I [mm] \cap [/mm] A. Also quasi der Beweis der Hinrichtung.
Wenn A messbar ist dann gilt bzgl einer Beliebigen Teilmenge J [mm] \lambda*(J)=\lambda*(J \cap A)+\lambda^{*}(J\A). [/mm] Jetzt kann ich J so legen, das I und A teilmengen von J sind. Dann würde daraus schnell die Behauptung folgen. Aber so kann das nicht gehen. Ich bitte um Hinweise danke schön


        
Bezug
Messbarkeit: Lesbarer bitte
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:47 Mo 14.04.2008
Autor: SEcki


> Wir definieren das innere Lebesgue Maß einer beschränkten
> Teilmenge A  R durch
>  [mm]\lambda(A) :=\lambda*[/mm] (I) − [mm]\lambda*(I[/mm] \ A)
>  wobei I ein Intervall ist der A enthält.

Könntest du das bitte lesbar machen? Ich blicke da nicht durch! Und * ist [m]\star[/m] im Formeleditor.

SEcki

Bezug
        
Bezug
Messbarkeit: Aufgabe korrigiert?!Mehr Infos
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:51 Mo 14.04.2008
Autor: Marcel

Hallo,


> Wir definieren das innere Lebesgue Maß einer beschränkten
> Teilmenge A  R durch

meinst Du $A [mm] \subset \IR$? [/mm]

>  [mm]\lambda(A) :=\lambda*[/mm] (I) − [mm]\lambda*(I[/mm] \ A)
>  wobei I ein Intervall ist der A enthält.

D.h.:
Ist $I$ ein Intervall mit $A [mm] \subset [/mm] I$, so sei

[mm] $\lambda(A)=\lambda^{\star}(I)-\lambda^{\star}(A \setminus [/mm] I)$?
  

> eine beschränkte Menge $A [mm] \subset [/mm] R$ ist genau dann
> Lebesgue meßbar, wenn [mm]\red{\lambda^{\star}(A)=\lambda^{\star}(A)}.[/mm]

Also so habe ich Deine Aufgabe mal übersetzt. Problem:
[mm] $\lambda^{\star}(A)=\lambda^{\star}(A)$ [/mm] gilt immer ;-)

Was Du dort meintest, ist sicher

[mm] $\lambda^{\star}(A)=\lambda(A)$. [/mm]

Du enthälst uns aber eine wichtige Information:
Wie habt ihr denn überhaupt [mm] $\lambda^{\star}(.)$ [/mm] definiert? Und Eure Definition der Lebesgue-Messbarkeit wäre auch nicht uninteressant ;-)

Ich meine: Ich kann jetzt mit den mir bekannten Begriffen und Definitionen arbeiten, und dann stellt sich am Ende heraus, dass Dir das nichts bringt, weil ihr es anders definiert habt und Dir entsprechende Sätze fehlen, um das zu übertragen...

P.S.:
Wenn Du die Formeln anklickst, siehst Du den zugehörigen Quelltext. Falls Du doch hier etwas anderes meintest, sollte es Dir nun möglich sein, Deine Aufgabe "richtig und lesbar" auszuformulieren. Nichtsdestotrotz bitte ich Dich, uns die von mir oben nachgefragten Informationen mitzuteilen!

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]