matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieMessbarkeit von Schnitten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Wahrscheinlichkeitstheorie" - Messbarkeit von Schnitten
Messbarkeit von Schnitten < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Messbarkeit von Schnitten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:51 Mi 19.05.2010
Autor: kunzmaniac

Aufgabe
Seien [mm] $(\Omega_i, \mathcal{A}_i, \mu_i)$ [/mm] für $i=1,2$ Maßräume, zeige:

Für [mm] $\mu_2$ [/mm] endlich und [mm] $A\in\mathcal{A}_1 \otimes\mathcal{A}_1$ [/mm] ist

[mm] $f:(\Omega_1,\mathcal{A}_1)\rightarrow(\IR, \mathcal{B_{\IR}})$ [/mm] durch [mm] $\omega_1 \mapsto\mu_2(A_{\omega_1})$ [/mm]

messbar [mm] ($A_{\omega_1}=\{\omega_2\in\Omega_2 \ | \ (\omega_1,\omega_2)\in A\}$). [/mm]

Hallo,

ich habe die Frage sonst nirgends gestellt.

ich habe gezeigt, dass [mm] $A_{\omega_1}$ [/mm] messbar ist, damit ist die Funktion wohldefiniert, nur wie zeige ich die Messbarkeit? Mein Ansatz wäre sich die Urbilder eines Erzeugendensystems von [mm] $\mathcal{B_{\IR}}$ [/mm] anzuschauen, also etwa die Urbilder offener Intervalle $(a,b)$:

[mm] $f^{-1}((a,b))=\{\omega_1 \in \Omega_1 \ | \ \mu_2(A_{\omega_1}) \in (a,b) \}$. [/mm]

ich kann da leider keinen Zusammenhang zu [mm] $\mathcal{A}_1$ [/mm] erkennen, bin für alle Tipps dankbar!


        
Bezug
Messbarkeit von Schnitten: Antwort
Status: (Antwort) fertig Status 
Datum: 19:02 Mi 19.05.2010
Autor: steppenhahn

Hallo!

$D = [mm] \{A\in \mathcal{A}_{1}\otimes\mathcal{A}_{2}:\mu_{2}(A_{w_{1}}) \mbox{ ist }(\mathcal{A}_{1},B)-messbar\}$ [/mm]

Zeige, dass dieses ein Dynkin-System ist!
Finde ein [mm] \cap [/mm] - stabiles Erzeugendensystem E von [mm] \mathcal{A}_{1}\otimes\mathcal{A}_{2} [/mm] , sodass das von E erzeugte Dynkin-System D ist.
Nach einem Satz gilt dann D = A(E), d.h. D ist gleich der von E erzeugten [mm] \sigma-Algebra. [/mm] Damit ist die Aussage bewiesen.

Grüße,
Stefan

Bezug
                
Bezug
Messbarkeit von Schnitten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:48 Mi 19.05.2010
Autor: kunzmaniac

Erst mal danke für die Anleitung,
leider ist mir nicht klar geworden wie man dieses $E$ konstruieren muss, wenn ich [mm] $\{A_1\times A_2\ \ | \ ...\}$ [/mm] wähle gewinne ich ja nichts!
Wie kommt man auf so ein Erzeugenden System, wo muss ich da ansetzen?


Bezug
                        
Bezug
Messbarkeit von Schnitten: Antwort
Status: (Antwort) fertig Status 
Datum: 01:24 Do 20.05.2010
Autor: steppenhahn

Hallo,

du hast schon Recht gehabt, das Erzeugendensystem ist [mm] $\mathcal{A}_{1}\times \mathcal{A}_{2}$. [/mm] Dieses ist durchschnitts-stabil.
Wenn du auch gezeigt hast, dass das Dynkin-System D oben eines ist, und wenn du gezeigt hast dass [mm] $\mathcal{A}_{1}\times \mathcal{A}_{2}\in [/mm] D$, dann hast du insgesamt:

[mm] $\mathcal{A}_{1}\otimes \mathcal{A}_{2} [/mm] = [mm] A(\mathcal{A}_{1}\times \mathcal{A}_{2}) [/mm] = [mm] D(\mathcal{A}_{1}\times \mathcal{A}_{2}) \subset [/mm] D [mm] \subset \mathcal{A}_{1}\otimes \mathcal{A}_{2}$. [/mm]

1. Teilmengenzeichen gilt wegen [mm] $\mathcal{A}_{1}\times \mathcal{A}_{2}\in [/mm] D$,
2. Teilmengenzeichen gilt weil D offensichtlich (nach Konstruktion) Teilmenge von [mm] \mathcal{A}_{1}\otimes \mathcal{A}_{2} [/mm] ist.

Grüße,
Stefan

Bezug
                                
Bezug
Messbarkeit von Schnitten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:52 Do 20.05.2010
Autor: kunzmaniac

Hey ich stehe mal wieder auf der langen Leitung!

ich meinte eigentlich eher was ich durch den Ansatz gewinne, wo ich doch genau dasselbe zeigen muss wie bei meinem ersten Ansatz, wenn ich argumentieren möchte, dass [mm] $E\subset \mathcal{D}$ [/mm] ist.
Ich muss ja gerade nachweisen, dass für alle Mengen [mm] $A=A_1\times A_2, \mu(A_{\omega_1})$ [/mm] messbar ist, da liegt für mich die Schwierigkeit, den Rest habe ich glaube ich verstanden.

Bezug
                                        
Bezug
Messbarkeit von Schnitten: Antwort
Status: (Antwort) fertig Status 
Datum: 08:17 Do 20.05.2010
Autor: steppenhahn

Hallo,

> Hey ich stehe mal wieder auf der langen Leitung!
>  
> ich meinte eigentlich eher was ich durch den Ansatz
> gewinne, wo ich doch genau dasselbe zeigen muss wie bei
> meinem ersten Ansatz, wenn ich argumentieren möchte, dass
> [mm]E\subset \mathcal{D}[/mm] ist.
>  Ich muss ja gerade nachweisen, dass für alle Mengen
> [mm]A=A_1\times A_2, \mu(A_{\omega_1})[/mm] messbar ist, da liegt
> für mich die Schwierigkeit, den Rest habe ich glaube ich
> verstanden.

Aber es ist doch

[mm] $\mu_{2}(A_{w1}) [/mm] = [mm] \mu_{2}(\{w2\in \Omega2|(w1,w2)\in A = A1\times A2\}) [/mm] = [mm] \mu_{2}(A_{2})$ [/mm]

eine konstante (und somit messbare) Funktion!

Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]