matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPartielle DifferentialgleichungenMethode der Charakteristiken
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Partielle Differentialgleichungen" - Methode der Charakteristiken
Methode der Charakteristiken < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Methode der Charakteristiken: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:49 Fr 13.03.2015
Autor: evinda

Hallo!!!

Ich will das folgende Problem lösen.

[mm] u_x(x,y)+(x+y)u_y(x,y)=0, [/mm] x+y>1, u(x,1-x)=f(x), x [mm] \in \mathbb{R} [/mm]

Wie kann ich das machen? Kann man die Methode der Charakteristiken anwenden?

In meinen Notizen gibt es ein Beispiel an dem man diese Methode anwendet. Dieses Beispiel ist aber in der Form a(t,x,u) [mm] u_x+ b(t,x,u)u_t=c(t,x,u) [/mm] .

[mm] x_t(x,t)-u_x(x,t)=0, [/mm] x [mm] \in \mathbb{R}, [/mm] t>0 [mm] \\ [/mm] u(x,0)=f(x), x [mm] \in \mathbb{R} [/mm]


Spielt es eine Rolle ob die Variable t oder y ist?

Am Anfang hat man folgendes genommen: [mm] (x(0),t(0))=(x_0,0). [/mm]

Was für  ein Anfangswert nimmt man in diesem Fall ?

Könnte man den folgenden nehmen [mm] (x(0),y(0))=(x_0,1-x_0) [/mm] ?


Ich hab die Frage auch in matheplanet gestellt.

http://matheplanet.de/matheplanet/nuke/html/viewtopic.php?topic=205521

        
Bezug
Methode der Charakteristiken: Antwort
Status: (Antwort) fertig Status 
Datum: 15:13 So 15.03.2015
Autor: MathePower

Hallo evinda,

> Hallo!!!
>
> Ich will das folgende Problem lösen.
>
> [mm]u_x(x,y)+(x+y)u_y(x,y)=0,[/mm] x+y>1, u(x,1-x)=f(x), x [mm]\in \mathbb{R}[/mm]
>  
> Wie kann ich das machen? Kann man die Methode der
> Charakteristiken anwenden?
>
> In meinen Notizen gibt es ein Beispiel an dem man diese
> Methode anwendet. Dieses Beispiel ist aber in der Form
> a(t,x,u) [mm]u_x+ b(t,x,u)u_t=c(t,x,u)[/mm] .
>
> [mm]x_t(x,t)-u_x(x,t)=0,[/mm] x [mm]\in \mathbb{R},[/mm] t>0 [mm]\\[/mm] u(x,0)=f(x),
> x [mm]\in \mathbb{R}[/mm]
>
>
> Spielt es eine Rolle ob die Variable t oder y ist?
>


Nein.


> Am Anfang hat man folgendes genommen: [mm](x(0),t(0))=(x_0,0).[/mm]

>


Es ist die in der Aufgabe angegebene Anfangsbedingung umzusetzen.

Mehr dazu: Methode der Charakteristiken: Einfache Transportgleichung.


> Was für  ein Anfangswert nimmt man in diesem Fall ?

>


Nach obigem Link ist das:

[mm]x\left(\tau=0\right)=\xi[/mm]

[mm]y\left(\tau=0\right)=1-\xi[/mm]

[mm]u\left(\tau=0\right)=f\left(\xi\right)[/mm]


> Könnte man den folgenden nehmen [mm](x(0),y(0))=(x_0,1-x_0)[/mm] ?
>  
>
> Ich hab die Frage auch in matheplanet gestellt.
>  
> http://matheplanet.de/matheplanet/nuke/html/viewtopic.php?topic=205521


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 17m 4. Diophant
ULinAAb/Kern und Bild bestimmen
Status vor 22m 3. Dom_89
DiffGlGew/Anwenden der Substitution
Status vor 3h 21m 2. fred97
IntTheo/mehrdim. part. Int., Doppelint
Status vor 9h 29m 7. HJKweseleit
USons/Bedeutung von dx, dt in Formel
Status vor 10h 03m 9. HJKweseleit
S8-10/Ableitung
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]