matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenMetrik
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Metrik
Metrik < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Metrik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:16 Sa 29.04.2006
Autor: papillon

Aufgabe
Gegeben: M=[0,1] und d(x,y)

= |x-y|    für  [mm] x\not=0 [/mm] und [mm] y\not= [/mm] 0
= 1         für  x=0 oder y=0
= 0         für  x=y=0


a)  Ist [mm] x_{n}=\bruch{1}{n} [/mm] eine Cauchy-Folge im metrischen Raum (M,d)?

b)  Ist [mm] x_{n} [/mm] konvergent in (M,d)?

c)  Ist der metrische Raum (M,d) vollständigt?

Meine Ansätze:

a)  Einsetzen in die Definition der Cauchy-Folge ergibt:
wegen [mm] x_{n}= \bruch{1}{n} \not=0 [/mm] ist [mm] d(x_{n},x_{m}) [/mm] = [mm] |\bruch{1}{n}-\bruch{1}{m}| [/mm]

Daraus folgt, dass [mm] x_{n} [/mm] eine Cauchy-Folge in (M,d) ist.

b) Einsetzen in die Definition des Grenzwerts ergibt:
[mm] d(r,x_{n}) [/mm]

= [mm] |r-\bruch{1}{n}| [/mm]   für  r [mm] \not= [/mm] 0
= 1                            für  r = 0

Daraus folgt, dass [mm] x_{n} [/mm] nicht konvergiert, denn für r=0 ist d=1, was nicht kleiner als alle [mm] \varepsilon [/mm] ist.

c) Der Raum ist nicht vollständig, denn nach a) und b) konvergiert nicht jede Cauchy-Folge in diesem Raum.



Sind diese Ansätze richtig? Wenn nein: Was muss ich anders machen? Wenn ja: Reicht das so aus?


Vielen Dank für eure Hilfe!

        
Bezug
Metrik: Antwort
Status: (Antwort) fertig Status 
Datum: 13:54 Sa 29.04.2006
Autor: SEcki


> Daraus folgt, dass [mm]x_{n}[/mm] eine Cauchy-Folge in (M,d) ist.

Wie im normalen [m]\IR[/m] auch.

> b) Einsetzen in die Definition des Grenzwerts ergibt:

Besser: falls x ein Grenzwert wäre, dann ...

>  [mm]d(r,x_{n})[/mm]
>
> = [mm]|r-\bruch{1}{n}|[/mm]   für  r [mm]\not=[/mm] 0
>  = 1                            für  r = 0

Prinzipiell richtig. etwas besser aufschreiben - dein Grenzwert x wäre 0 ode ein Zahl größer 0, dann führst du beides zum Widerspruch.

> c) Der Raum ist nicht vollständig, denn nach a) und b)
> konvergiert nicht jede Cauchy-Folge in diesem Raum.

Ja.

SEcki

Bezug
                
Bezug
Metrik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:23 Sa 29.04.2006
Autor: papillon


> > b) Einsetzen in die Definition des Grenzwerts ergibt:
>  
> Besser: falls x ein Grenzwert wäre, dann ...
>  
> >  [mm]d(r,x_{n})[/mm]

> >
> > = [mm]|r-\bruch{1}{n}|[/mm]   für  r [mm]\not=[/mm] 0
>  >  = 1                            für  r = 0
>  
> Prinzipiell richtig. etwas besser aufschreiben - dein
> Grenzwert x wäre 0 ode ein Zahl größer 0, dann führst du
> beides zum Widerspruch.


Könntest du mir das noch etwas ausführlicher erläutern?

Vielen Dank für deine Hilfe!!!

Bezug
                        
Bezug
Metrik: Antwort
Status: (Antwort) fertig Status 
Datum: 20:01 Sa 29.04.2006
Autor: SEcki


> > Prinzipiell richtig. etwas besser aufschreiben - dein
> > Grenzwert x wäre 0 ode ein Zahl größer 0, dann führst du
> > beides zum Widerspruch.
> Könntest du mir das noch etwas ausführlicher erläutern?

Da gibt's aber kaum was auszuführen - du nimmst einen hypothetischen Grenzwert x und führst die Existenz dessen zum Widerspruch mit den Argumenten, die schon gegeben hast. wo liegt dein Problem?

SEcki


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]