Metrik < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:13 Di 19.04.2005 | Autor: | Tito |
Hallo!
Ich habe folgendes
X ist ein linearer Raum, [mm] (||.||_n)_{n \in \IN } [/mm] eine Folge von Normen auf X
( [mm] \lambda_n)_{n \in \IN } [/mm] eine Folge positiver reeller Zahlen, so dass [mm] \summe_{n=1}^{\infty} \lambda_n [/mm] konvergiert.
zu zeigen:
d(x,y) := [mm] \summe_{n=1}^{\infty} \lambda_n \bruch{|| x - y ||_n}{1 + || x - y ||_n} [/mm] , [mm] \forall [/mm] x,y [mm] \in [/mm] X
ist eine Metrik.
[mm] \forall [/mm] x,y [mm] \in [/mm] X d(x,y) [mm] \ge [/mm] 0 und d(x,y) = 0 [mm] \gdw [/mm] x = y
und symmetrie habe ich schon gezeigt.
Ich weiß nun nicht wie ich die Dreiecksungleichung zeigen kann.
d(x,z) [mm] \le [/mm] d(x,y) + d(y,z) [mm] \forall [/mm] x,y,z [mm] \in [/mm] X soll gezeigt werden
Nun habe ich für die rechte Seite alles eingesetzt was gegeben ist und habe versucht abzuschätzen, dass dies größer gleich der linken Seite ist, habe ich aber leider nicht geschafft. Und dann habe ich es versucht von der linken Seite abzuschätzen indem ich halt mit 0 (= x-x für x eine Form der Metrik) addiert habe bin leider auch auf nichts hilfreiches gekommen.
Könnte mir jemand helfen,
danke. Gruß
Tito
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:21 Di 19.04.2005 | Autor: | Marcel |
Hallo Tito!
> Hallo!
>
> Ich habe folgendes
> X ist ein linearer Raum, [mm](||.||_n)_{n \in \IN }[/mm] eine Folge
> von Normen auf X
> ( [mm]\lambda_n)_{n \in \IN }[/mm] eine Folge positiver reeller
> Zahlen, so dass [mm]\summe_{n=1}^{\infty} \lambda_n[/mm]
> konvergiert.
> zu zeigen:
> d(x,y) := [mm]\summe_{n=1}^{\infty} \lambda_n \bruch{|| x - y ||_n}{1 + || x - y ||_n}[/mm]
> , [mm]\forall[/mm] x,y [mm]\in[/mm] X
>
> ist eine Metrik.
> [mm]\forall[/mm] x,y [mm]\in[/mm] X d(x,y) [mm]\ge[/mm] 0 und d(x,y) = 0 [mm]\gdw[/mm] x =
> y
> und symmetrie habe ich schon gezeigt.
Denk bitte auch dran, dass du zeigen musst, dass die Reihe [mm]\summe_{n=1}^{\infty} \lambda_n \bruch{|| x - y ||_n}{1 + || x - y ||_n}[/mm] für alle $x,y [mm] \in [/mm] X$ konvergent ist ("Wohldefiniertheit" der Metrik!). Das ist aber einfach (Majorantenkriterium!).
> Ich weiß nun nicht wie ich die Dreiecksungleichung zeigen
> kann.
> d(x,z) [mm]\le[/mm] d(x,y) + d(y,z) [mm]\forall[/mm] x,y,z [mm]\in[/mm] X soll
> gezeigt werden
> Nun habe ich für die rechte Seite alles eingesetzt was
> gegeben ist und habe versucht abzuschätzen, dass dies
> größer gleich der linken Seite ist, habe ich aber leider
> nicht geschafft. Und dann habe ich es versucht von der
> linken Seite abzuschätzen indem ich halt mit 0 (= x-x für x
> eine Form der Metrik) addiert habe bin leider auch auf
> nichts hilfreiches gekommen.
> Könnte mir jemand helfen,
> danke. Gruß
Ja, ich denke, ich gebe dir mal einen Tipp, wie du anders an die Aufgabe herangehen kannst. Für bel., aber festes $n [mm] \in \IN$ [/mm] ist ja [mm] $||.||_n$ [/mm] eine Norm auf $X$. Nun definierst du:
[mm] $e_n(x,y):=\bruch{|| x - y ||_n}{1 + || x - y ||_n}$ $\forall [/mm] x,y [mm] \in [/mm] X$
So, und nun rechnest du nach, dass für jedes bel., aber feste $n [mm] \in \IN$ [/mm] gilt, dass durch [mm] $e_n$ [/mm] eine Metrik auf $X$ gegeben ist, das heißt dann insbesondere, dass für jedes bel., aber feste $n [mm] \in \IN$ [/mm] die Dreiecksungleichung erfüllt, ist, also:
[mm](\star)[/mm] [mm]\forall n \in \IN[/mm]: [mm] $\forall [/mm] x,y,z [mm] \in [/mm] X$: [mm]e_n(x,z) \le e_n(x,y)+e_n(y,z)[/mm].
Nun benutzt du die Kenntnis [mm] $(\star)$, [/mm] um die Dreiecksungleichung bei $d$ nachzurechnen.
Viele Grüße,
Marcel
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 16:08 Di 19.04.2005 | Autor: | Tito |
Hallo und Danke Marcel,
> So, und nun rechnest du nach, dass für jedes bel., aber
> feste [mm]n \in \IN[/mm] gilt, dass durch [mm]e_n[/mm] eine Metrik auf [mm]X[/mm]
> gegeben ist, das heißt dann insbesondere, dass für jedes
> bel., aber feste [mm]n \in \IN[/mm] die Dreiecksungleichung erfüllt,
> ist, also:
> [mm](\star)[/mm] [mm]\forall n \in \IN[/mm]: [mm]\forall x,y,z \in X[/mm]: [mm]e_n(x,z) \le e_n(x,y)+e_n(y,z)[/mm].
>
> Nun benutzt du die Kenntnis [mm](\star)[/mm], um die
> Dreiecksungleichung bei [mm]d[/mm] nachzurechnen.
Also heißt das, dass ich eigentlich nur zeigen muss das [mm] e_n(x,y) [/mm] eine Metrik auf X ist und dann mit der Dreiecksgleichung [mm](\star)[/mm] die ich noch zeigen muss weiterrechne in Form:
Einfach beide Seite mal [mm] \summe_{n=1}^{\infty} \lambda_n [/mm] , da die Summe ja nur aus positiv reellen Zahlen besteht, was die Ordnung nicht ändert ergibt das dann :
[mm] d(x,y) = \summe_{n=1}^{\infty} \lambda_n \bruch{|| x - y ||_n}{1 + || x - y ||_n} \le \summe_{n=1}^{\infty} \lambda_n \bruch{|| x - z ||_n}{1 + || x - z ||_n} + \summe_{n=1}^{\infty} \lambda_n \bruch{|| z - y ||_n}{1 + || z - y ||_n} = d(x,z) + d(z,y) [/mm]
Sehe ich das richtig?
Gruß
Tito
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:14 Di 19.04.2005 | Autor: | Marcel |
Hi Tito!
> Hallo und Danke Marcel,
Bitte !
>
> > So, und nun rechnest du nach, dass für jedes bel., aber
> > feste [mm]n \in \IN[/mm] gilt, dass durch [mm]e_n[/mm] eine Metrik auf [mm]X[/mm]
> > gegeben ist, das heißt dann insbesondere, dass für jedes
> > bel., aber feste [mm]n \in \IN[/mm] die Dreiecksungleichung erfüllt,
> > ist, also:
> > [mm](\star)[/mm] [mm]\forall n \in \IN[/mm]: [mm]\forall x,y,z \in X[/mm]:
> [mm]e_n(x,z) \le e_n(x,y)+e_n(y,z)[/mm].
> >
> > Nun benutzt du die Kenntnis [mm](\star)[/mm], um die
> > Dreiecksungleichung bei [mm]d[/mm] nachzurechnen.
>
> Also heißt das, dass ich eigentlich nur zeigen muss das
> [mm]e_n(x,y)[/mm] eine Metrik auf X ist
Ja, du mußt zunächst für jedes $n [mm] \in \IN$ [/mm] zeigen, dass durch [mm] $e_n$ [/mm] eine Metrik auf $X$ gegeben ist!
> und dann mit der
> Dreiecksgleichung [mm](\star)[/mm] die ich noch zeigen muss
> weiterrechne in Form:
>
> Einfach beide Seite mal [mm]\summe_{n=1}^{\infty} \lambda_n[/mm] ,
> da die Summe ja nur aus positiv reellen Zahlen besteht, was
> die Ordnung nicht ändert ergibt das dann :
Das versteh ich jetzt nicht ganz, wieso willst du beide Seiten mal dieser Summe rechnen? Du hast ja abzählbar unendlich viele Metriken [mm] $e_n$ [/mm] auf $X$...
> [mm]d(x,y) = \summe_{n=1}^{\infty} \lambda_n \bruch{|| x - y ||_n}{1 + || x - y ||_n} \le \summe_{n=1}^{\infty} \lambda_n \bruch{|| x - z ||_n}{1 + || x - z ||_n} + \summe_{n=1}^{\infty} \lambda_n \bruch{|| z - y ||_n}{1 + || z - y ||_n} = d(x,z) + d(z,y)[/mm]
Ja, das stimmt wiederum. Aber deine Argumentation habe ich nicht so ganz verstanden, vielleicht hast du dich auch nur unglücklich ausgedrückt. Wenn du weißt, dass für jedes $n [mm] \in \IN$ [/mm] gilt, dass [mm] $e_n$ [/mm] eine Metrik auf $X$ ist (was du noch zu beweisen hast), dann folgt:
[mm]d(x,y) = \summe_{n=1}^{\infty} \lambda_n \bruch{|| x - y ||_n}{1 + || x - y ||_n}=\summe_{n=1}^{\infty} \lambda_n e_n(x,y) \le \summe_{n=1}^{\infty} \lambda_n e_n(x,z) + \summe_{n=1}^{\infty} \lambda_n e_n(z,y) =\summe_{n=1}^{\infty} \lambda_n \bruch{|| x - z ||_n}{1 + || x - z ||_n} + \summe_{n=1}^{\infty} \lambda_n \bruch{|| z - y ||_n}{1 + || z - y ||_n} = d(x,z) + d(z,y)[/mm]
Und zwar folgt dies, weil für jeden Summanden von [mm]\summe_{n=1}^{\infty} \lambda_n e_n(x,y)[/mm] gilt, dass dieser [mm] $\ge [/mm] 0$ ist und du auf jedes [mm] $e_n$ [/mm] dann die Dreiecksungleichung anwenden darfst, weil das eine Metrik auf $X$ ist. Vielleicht wird es dir klarer, wenn ich es mal anders aufschreibe:
[mm]d(x,y) =\summe_{n=1}^{\infty} \lambda_n e_n(x,y)
= \lambda_1 \underbrace{e_1(x,y)}_{\le e_1(x,z)+e_1(z,y);\;da\;e_1\;Metrik}
+\lambda_2 \underbrace{e_2(x,y)}_{\le e_2(x,z)+e_2(z,y);\;da\;e_2\;Metrik}
+\lambda_3 \underbrace{e_3(x,y)}_{\le e_3(x,z)+e_3(z,y);\;da\;e_3\;Metrik}+\ldots[/mm]
[mm]\le \lambda_1 e_1(x,z)+\lambda_1 e_1(z,y)
+\lambda_2 e_2(x,z)+\lambda_2 e_2(z,y)
+\lambda_3 e_3(x,z)+\lambda_3 e_3(z,y)+\ldots[/mm]
[mm]
\stackrel{umsortieren\;der\;Summanden;\;moegl.\;wegen\;der\;absoluten\;Konvergenz}{=}
[/mm]
[mm]\underbrace{\lambda_1 e_1(x,z)+\lambda_2 e_2(x,z)+\lambda_3 e_3 (x,z)+\ldots}_{=\summe_{n=1}^{\infty}\lambda_n e_n(x,z)}+\underbrace{\lambda_1 e_1(z,y)+\lambda_2 e_2(z,y)+\lambda_3 e_3(z,y)+\ldots}_{=\summe_{n=1}^{\infty}\lambda_n e_n(z,y)}
=d(x,z)+d(z,y)
[/mm] (Zum "Umsortieren": siehe auch Satz 6.24, http://www.mathematik.uni-trier.de/~mueller/AnalysisI-IV.pdf)
(Ergänzend das ganze nochmal in einer etwas "kompakteren" Schreibweise (beachte aber das Argument zum "Umsortieren"):
Weil für jedes $n [mm] \in \IN$ [/mm] gilt, dass [mm] $e_n$ [/mm] eine Metrik auf $X$ ist, folgt:
[m]\summe_{n=1}^{\infty}\lambda_n e_n(x,y) \stackrel{\Delta-Ungl.\;fuer\;jedes\;n \in \IN\;anwenden}{\le} \summe_{n=1}^{\infty}\left(\lambda_n(e_n(x,z)+e_n(z,y))\right)
\stackrel{Umsortieren}{=}\summe_{n=1}^{\infty}\lambda_n e_n(x,z)+\summe_{n=1}^{\infty}\lambda_n e_n(z,y)[/m] )
Viele Grüße,
Marcel
|
|
|
|