Metrik, Dreiecksungleichung < Sonstiges < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Warum ist die auf [mm] \IR^{2} \times \IR^{2} [/mm] definierte Abbildung
[mm] d_{2}: \IR^{2} \times \IR^{2} \to [0,\infty[, d_{2}((x_{1},x_{2}),(y_{1},y_{2})):=\wurzel{(x_{1}-y_{1})^2+(x_{2}-y_{2})^2}
[/mm]
eine Metrik auf [mm] \IR^{2}? [/mm] |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Guten Morgen!
Ich soll also zeigen, dass die Abstandsfunktion eine Metrik ist. Das ist bis auf die Dreiecksungleichung auch kein Problem. Ich soll ja zeigen, dass
[mm] \forall(a_{1},a_{2})(x_{1},x_{2}),(y_{1},y_{2})\in\IR^{2}: d_{2}((x_{1},x_{2}),(y_{1},y_{2}))\le d_{2}((x_{1},x_{2}),(a_{1},a_{2}))+d_{2}((a_{1},a_{2}),(y_{1},y_{2})) [/mm] gilt.
Hierfür bräuchte ich einen Tipp, da meine bisherigen Umformungen nur Unfug ergeben haben.
Vielen Dank im Voraus!
Gruß
MarthaMathik
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:15 So 06.01.2008 | Autor: | rainerS |
Hallo!
> Warum ist die auf [mm]\IR^{2} \times \IR^{2}[/mm] definierte
> Abbildung
>
> [mm]d_{2}: \IR^{2} \times \IR^{2} \to [0,\infty[, d_{2}((x_{1},x_{2}),(y_{1},y_{2})):=\wurzel{(x_{1}-y_{1})^2+(x_{2}-y_{2})^2}[/mm]
>
> eine Metrik auf [mm]\IR^{2}?[/mm]
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
> Guten Morgen!
>
> Ich soll also zeigen, dass die Abstandsfunktion eine Metrik
> ist. Das ist bis auf die Dreiecksungleichung auch kein
> Problem. Ich soll ja zeigen, dass
>
> [mm]\forall(a_{1},a_{2})(x_{1},x_{2}),(y_{1},y_{2})\in\IR^{2}: d_{2}((x_{1},x_{2}),(y_{1},y_{2}))\le d_{2}((x_{1},x_{2}),(a_{1},a_{2}))+d_{2}((a_{1},a_{2}),(y_{1},y_{2}))[/mm]
> gilt.
>
> Hierfür bräuchte ich einen Tipp, da meine bisherigen
> Umformungen nur Unfug ergeben haben.
Um die Rechnung zu vereinfachen, setzt du [mm]y_1=y_2=0[/mm]. Das kannst du tun, da die Abbildung translationsinvariant ist, ihren Wert nicht ändert, wenn du auf [mm](x_1,x_2)[/mm] und [mm](y_1,y_2)[/mm] den gleichen Vektor draufaddierst:
[mm]d_2((x_{1},x_{2}),(y_{1},y_{2})) = d_2((x_1-y_1,x_2-y_2),(0,0))[/mm]
und daher aus
[mm] d_2((x_1,x_2),(0,0) \le d_{2}((x_{1},x_{2}),(a_{1},a_{2}))+d_{2}((a_{1},a_{2}),(0,0)) [/mm]
die Behauptung für beliebige Werte folgt:
[mm]d_2((x_{1},x_{2}),(y_{1},y_{2})) = d_{2}((x_{1}-y_1,x_{2}-y_2),(0,0))\le d_{2}((x_{1}-y_1,x_{2}-y_2),(a_{1},a_{2}))+d_{2}((a_{1},a_{2}),(0,0)) [/mm]
[mm]= d_{2}((x_{1},x_{2}),(a_{1}+y_1,a_{2}+y_2))+d_{2}((a_{1}+y_1,a_{2}+y_2),(y_{1},y_{2}))[/mm]
Damit wird deine Rechnung einfacher. Am Einfachsten ist es, wenn du
[mm] d_2((x_1,x_2),(0,0) - d_{2}((a_{1},a_{2}),(0,0)) \le d_{2}((x_{1},x_{2}),(a_{1},a_{2})) [/mm]
durch Quadrieren nachweist.
Viele Grüße
Rainer
|
|
|
|
|
Mit dem Nullsetzen eines Wertes funktioniert der Beweis gut. Allerdings haben wir Translationsinvarianz noch nicht in der Vorlesung gehabt. Obwohl es anschaulich klar ist, müsste ich dann wohl noch beweisen, dass ich hier einfach so einen Wert nullsetzen darf.
Geht es also vielleicht noch einfacher? Wenn ich ganz normal ohne das Nullsetzen rechne, bekomme ich endlos lange Terme, die mir leider nicht weiterhelfen.
Gruß
MarthaMatik
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:46 So 06.01.2008 | Autor: | rainerS |
Hallo!
> Mit dem Nullsetzen eines Wertes funktioniert der Beweis
> gut. Allerdings haben wir Translationsinvarianz noch nicht
> in der Vorlesung gehabt. Obwohl es anschaulich klar ist,
> müsste ich dann wohl noch beweisen, dass ich hier einfach
> so einen Wert nullsetzen darf.
Aber den Beweis habe ich dir doch hingeschrieben: Wenn die Aussage für [mm] $(y_1,y_2)=(0,0)$ [/mm] gilt, folgt:
$ [mm] d_2((x_{1},x_{2}),(y_{1},y_{2})) [/mm] = [mm] d_{2}((x_{1}-y_1,x_{2}-y_2),(0,0))\le d_{2}((x_{1}-y_1,x_{2}-y_2),(a_{1},a_{2}))+d_{2}((a_{1},a_{2}),(0,0)) [/mm] $
$ = [mm] d_{2}((x_{1},x_{2}),(a_{1}+y_1,a_{2}+y_2))+d_{2}((a_{1}+y_1,a_{2}+y_2),(y_{1},y_{2})) [/mm] $
Also gilt dies für beliebige [mm](a_{1}+y_1,a_{2}+y_2)\in\IR^2[/mm].
Viele Grüße
Rainer
|
|
|
|