matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraMin.Polynom/algebraisch
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - Min.Polynom/algebraisch
Min.Polynom/algebraisch < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Min.Polynom/algebraisch: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:54 Do 19.01.2006
Autor: Sanshine

Aufgabe
Seien K,M,L Körper mit K [mm] \le [/mm] M [mm] \le [/mm] L und a [mm] \in [/mm] L algebraisch über K. Ferner sei m [mm] \in [/mm] M[t] das Minimalpolynom über M.
Beh.:
a) b ist Nullstelle von m in einem Oberkörper von L [mm] \Rightarrow [/mm] b ist algebraisch über K.
b) Alle Koeffizienten von m sind algebraisch über K.

Hallo. Ich habe mal wieder eine Frage, wie man sieht. Und zwar komme ich bei dieser Aufgabe mit b) überhaupt nicht klar (habe schon alles mögliche ausprobiert, nur scheinbar nicht das richtige) und bin mir bei a) nicht sicher, dass folgender Ansatz richtig ist:
Da a algebraisch, ex. [mm] f\not= [/mm] 0 [mm] \in [/mm] K[t] mit f(a)=0. Da m MinPol von a, teilt es f, d.h. es ex. ein [mm] p\in [/mm] K[t] mit mp=f.
Wenn jetzt b eingesetzt wird, ergibt sich: (mp)(b)=m(b)p(b)=0p(b)=0=f(b). Also habe ich ein f [mm] \in [/mm] K[t] gefunden mit f(b)=0, also ist b algebraisch, oder? Aber warum muss dann b unbedingt aus einem Oberkörper von L sein? hab ich etwas übersehen?
Wäre froh, wenn mir jemand (vor allem bei b) ) weiterhelfen könnte,
Gruß, San

        
Bezug
Min.Polynom/algebraisch: Antwort
Status: (Antwort) fertig Status 
Datum: 13:20 Do 19.01.2006
Autor: felixf


> Seien K,M,L Körper mit K [mm]\le[/mm] M [mm]\le[/mm] L und a [mm]\in[/mm] L
> algebraisch über K. Ferner sei m [mm]\in[/mm] M[t] das Minimalpolynom über M.
>  Beh.:
> a) b ist Nullstelle von m in einem Oberkörper von L [mm]\Rightarrow[/mm] b ist algebraisch über K.
>  b) Alle Koeffizienten von m sind algebraisch über K.
>  Hallo. Ich habe mal wieder eine Frage, wie man sieht. Und zwar komme ich bei dieser Aufgabe mit b) überhaupt nicht klar (habe schon alles mögliche ausprobiert, nur scheinbar nicht das richtige) und bin mir bei a) nicht sicher, dass folgender Ansatz richtig ist:
>  Da a algebraisch, ex. [mm]f\not=[/mm] 0 [mm]\in[/mm] K[t] mit f(a)=0. Da m MinPol von a, teilt es f, d.h. es ex. ein [mm]p\in[/mm] K[t] mit mp=f.

Vorsicht, das [mm]p[/mm] muss nicht in [mm]K[t][/mm] sein, sondern ist im Allgemeinen nur in [mm]M[t][/mm]! (Ansonsten waere [mm]m[/mm] auch schon in [mm]K[t][/mm], wie man mit Polynomdivision sieht!) Der Rest geht dann aber:

> Wenn jetzt b eingesetzt wird, ergibt sich: (mp)(b)=m(b)p(b)=0p(b)=0=f(b). Also habe ich ein f [mm]\in[/mm] K[t] gefunden mit f(b)=0, also ist b algebraisch, oder?


> Aber warum muss dann b unbedingt aus einem Oberkörper von L sein? hab ich etwas übersehen?

Nur weil es (auch) in einem Oberkoerper von $L$ ist kann es bereits auch in $L$ selber liegen. (Du kannst ja als den Oberkoerper den Zerfaellungskoerper von $m$ ueber $L$ waehlen, da liegen dann alle Nullstellen drin.) Diese Formulierung steht da nur, damit wirklich _jede_ Nullstelle von $m$ (egal in welchem Koerper sie liegt) genommen werden kann.

>  Wäre froh, wenn mir jemand (vor allem bei b) ) weiterhelfen könnte,

Bei b) kannst du wie folgt vorgehen: Nimm einen Oberkoerper von $L$, der alle Nullstellen von $m$ enthaelt (z.B. Zerfaellungskoerper). Diese sind nach a) alle algebraisch ueber $K$. Jetzt kannst du die Koeffizienten von $m$ durch Polynome in allen Nullstellen von $m$ ausdruecken. Kommst du jetzt weiter?

LG Felix


Bezug
                
Bezug
Min.Polynom/algebraisch: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:32 Do 19.01.2006
Autor: Sanshine

Aufgabe
Seien K,M,L Körper mit K [mm]\le[/mm] M [mm]\le[/mm] L und a [mm]\in[/mm] L algebraisch über K. Ferner sei m [mm]\in[/mm] M[t] das Minimalpolynom über M.
Beh.:
a) b ist Nullstelle von m in einem Oberkörper von L [mm]\Rightarrow[/mm] b ist algebraisch über K.
b) Alle Koeffizienten von m sind algebraisch über K.

Erst einmal: Vielen Dank für die schnelle Antwort, bin froh, dass ich wenigstens bei a) richtig lag.
Ansonsten:

> Bei b) kannst du wie folgt vorgehen: Nimm einen Oberkoerper von [mm]L[/mm], der alle Nullstellen von [mm]m[/mm] enthaelt (z.B. Zerfaellungskoerper). Diese sind nach a) alle algebraisch ueber [mm]K[/mm]. Jetzt kannst du die Koeffizienten von [mm]m[/mm] durch Polynome in allen Nullstellen von [mm]m[/mm] ausdruecken. Kommst du jetzt weiter?

Nein! Auch wenn ich glaube ich sehe, wie das alles in etwa gehen sollte, komme ich leider konkret doch nicht weiter. Wäre froh, wenn du mir noch einen weiteren Fingerzeig geben könntest...
Gruß,
San


Bezug
                        
Bezug
Min.Polynom/algebraisch: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:48 Sa 21.01.2006
Autor: Loddar

Hallo Sanshine!


Leider konnte Dir keiner mit Deinem Problem / Deiner Rückfrage in der von Dir vorgegebenen Zeit weiterhelfen.

Vielleicht hast Du ja beim nächsten Mal mehr Glück [kleeblatt] .


Gruß
Loddar


Bezug
                        
Bezug
Min.Polynom/algebraisch: Antwort
Status: (Antwort) fertig Status 
Datum: 12:50 Do 23.02.2006
Autor: felixf

Sorry fuer die spaete Antwort...

> Seien K,M,L Körper mit K [mm]\le[/mm] M [mm]\le[/mm] L und a [mm]\in[/mm] L
> algebraisch über K. Ferner sei m [mm]\in[/mm] M[t] das Minimalpolynom über M.
>  Beh.:
> a) b ist Nullstelle von m in einem Oberkörper von L [mm]\Rightarrow[/mm] b ist algebraisch über K.
>  b) Alle Koeffizienten von m sind algebraisch über K.
>  
> Erst einmal: Vielen Dank für die schnelle Antwort, bin froh, dass ich wenigstens bei a) richtig lag.
>  Ansonsten:
>  > Bei b) kannst du wie folgt vorgehen: Nimm einen Oberkoerper von [mm]L[/mm], der alle Nullstellen von [mm]m[/mm] enthaelt (z.B. Zerfaellungskoerper). Diese sind nach a) alle algebraisch ueber [mm]K[/mm]. Jetzt kannst du die Koeffizienten von [mm]m[/mm] durch Polynome in allen Nullstellen von [mm]m[/mm] ausdruecken. Kommst du jetzt weiter?

>  
> Nein! Auch wenn ich glaube ich sehe, wie das alles in etwa gehen sollte, komme ich leider konkret doch nicht weiter. Wäre froh, wenn du mir noch einen weiteren Fingerzeig geben könntest...

Sei $L'$ ein Zerfaellungskoerper von $m$ ueber $M$ (oder irgendein anderer Koerper ueber dem $m$ in Linearfaktoren zerfaellt). Sei $m = [mm] \prod_{i=1}^n [/mm] (x - [mm] a_i)$ [/mm] mit [mm] $a_i \in [/mm] M$. Durch Ausmultiplizieren siehst du, das alle Koeffizienten von $m$ in [mm] $K[a_1, \dots, a_n]$ [/mm] liegen. Es reicht also zu zeigen, dass die [mm] $a_i$ [/mm] alle algebraisch ueber $K$ sind, womit dann [mm] $K[a_1, \dots, a_n]$ [/mm] eine endliche und somit algebraische Erweiterung von $K$ ist, die alle Koeffizienten von $m$ enthaelt.

Aber das die [mm]a_i[/mm] algebraisch sind ist auch klar: Sei [mm] $\hat{m}$ [/mm] das Minimalpolynom von $a$ ueber $K$. Da [mm]\hat{m}(a) = 0[/mm] ist, gibt es ein Polynom $g [mm] \in [/mm] M[t]$ mit [mm]\hat{m} = g m[/mm] (da $m$ das MiPo von $a$ ueber $M$ ist). Damit ist [mm]\hat{m}(a_i) = g(a_i) m(a_i) = g(a_i) \cdot 0 = 0[/mm], womit alle [mm] $a_i$ [/mm] algebraisch ueber $K$ sind.

LG Felix



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]