matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLängen, Abstände, WinkelMinimaler Abstand Punkt-Gerade
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Längen, Abstände, Winkel" - Minimaler Abstand Punkt-Gerade
Minimaler Abstand Punkt-Gerade < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Minimaler Abstand Punkt-Gerade: Hilfe Lösungsweg
Status: (Frage) beantwortet Status 
Datum: 16:53 Di 13.03.2012
Autor: ropf

Aufgabe
Aufgabe 8 Flugbahnen
Wir betrachten ein Koordinatensystem im Raum.
Die Koordinaten der Richtungsvektoren sind kartesisch mit
den Koordinatenachsen in Ostrichtung, in Nordrichtung und
senkrecht nach oben. Entgegen der üblichen Schreibweise
wird hier, angepasst an die Navigation auf der Erde, die folgende
Darstellung gewählt:
Ost   (X1)
Nord (X2)
Oben(X3)

Die Längeneinheit in allen drei Richtungen beträgt 1 km.
Gegeben sind vier Punkte im Raum:
A (–5 | –9 | 8) B ( 5 | 1 | 8) C ( 13 | 33 | 10) D(19 | 27 | 9).
Die Geraden
g: x=a+t(b-a), t E R
h: x=c+t(d-c),t E R
beschreiben kurzzeitig die Bahnen zweier Flugzeuge.
Um 8.00 Uhr befand sich das erste Flugzeug im Punkt A und das zweite Flugzeug im Punkt C und
beide flogen danach noch mindestens 4 Minuten mit konstanter Geschwindigkeit weiter. Der Parameter
t hatte solange auch die Bedeutung einer Zeit [in Minuten].
t = 0 bedeutet also 8:00 Uhr.

h) h) Ein Flugsender befindet sich im Punkt FS. mit den Koordinaten FS(100 | 100 | 0).
Bestimmen Sie, an welchem Punkt seiner Flugbahn das erste Flugzeug dem Flugsender am nächsten
war und wie groß dieser Abstand dort war.
Beurteilen Sie, ob man mit den bekannten Informationen auch feststellen kann, um welche Uhrzeit
das war.

Hallo,

bezüglich der Aufgabe verstehe ich nicht die Vorgehensweise. Ich brauche keine Lösung der Aufgabe, sondenr lediglich eine Erklärung. Die Lösung habe ich vorliegen, verstehe jedoch nicht warum hier ein Differenzvektor zwischen Punkt und Gerade gebildet wird, welcher anschließend in die Geradengleichung als Stützvektor eingesetzt wird und quadriert.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Danke für die Hilfe.
MfG

        
Bezug
Minimaler Abstand Punkt-Gerade: Antwort
Status: (Antwort) fertig Status 
Datum: 18:20 Di 13.03.2012
Autor: abakus


> Aufgabe 8 Flugbahnen
>  Wir betrachten ein Koordinatensystem im Raum.
>  Die Koordinaten der Richtungsvektoren sind kartesisch mit
>  den Koordinatenachsen in Ostrichtung, in Nordrichtung und
>  senkrecht nach oben. Entgegen der üblichen Schreibweise
>  wird hier, angepasst an die Navigation auf der Erde, die
> folgende
>  Darstellung gewählt:
>  Ost   (X1)
>  Nord (X2)
>  Oben(X3)
>  
> Die Längeneinheit in allen drei Richtungen beträgt 1 km.
>  Gegeben sind vier Punkte im Raum:
>  A (–5 | –9 | 8) B ( 5 | 1 | 8) C ( 13 | 33 | 10) D(19
> | 27 | 9).
>  Die Geraden
>  g: x=a+t(b-a), t E R
>  h: x=c+t(d-c),t E R
>  beschreiben kurzzeitig die Bahnen zweier Flugzeuge.
>  Um 8.00 Uhr befand sich das erste Flugzeug im Punkt A und
> das zweite Flugzeug im Punkt C und
>  beide flogen danach noch mindestens 4 Minuten mit
> konstanter Geschwindigkeit weiter. Der Parameter
>  t hatte solange auch die Bedeutung einer Zeit [in
> Minuten].
>  t = 0 bedeutet also 8:00 Uhr.
>  
> h) h) Ein Flugsender befindet sich im Punkt FS. mit den
> Koordinaten FS(100 | 100 | 0).
>  Bestimmen Sie, an welchem Punkt seiner Flugbahn das erste
> Flugzeug dem Flugsender am nächsten
>  war und wie groß dieser Abstand dort war.
>  Beurteilen Sie, ob man mit den bekannten Informationen
> auch feststellen kann, um welche Uhrzeit
>  das war.
>  Hallo,
>  
> bezüglich der Aufgabe verstehe ich nicht die
> Vorgehensweise. Ich brauche keine Lösung der Aufgabe,
> sondenr lediglich eine Erklärung. Die Lösung habe ich
> vorliegen, verstehe jedoch nicht warum hier ein
> Differenzvektor zwischen Punkt und Gerade gebildet wird,
> welcher anschließend in die Geradengleichung als
> Stützvektor eingesetzt wird und quadriert.

Hallo,
der Abstand zwischen zwei Punkten wird berechnet, indem die Koordinatendifferenzen in x-, in y- und in z-Richtung gebildet werden, diese Koordinatendifferenzen quadriert werden, diese quadrate addiert werden und aus der Summe der Quadrate die Wurzel gezogen wird.
Es gibt nun einen bestimmten Wert t (in den Koordinaten des verwendeten Geradenpunktes), für den der Abstand (und damit die Wurzel und damit der Term unter der Wurzel) minimal wird.
Gruß Abakus

>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Danke für die Hilfe.
>  MfG


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]