matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraMinimalpolynom berechnen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - Minimalpolynom berechnen
Minimalpolynom berechnen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Minimalpolynom berechnen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 14:22 So 16.05.2004
Autor: Dr_Schnaggles

Hallo alle miteinander, ich hab da mal ein kleines Problem.
Ich habe absolut keine Ahnung wie ich die Minimalpolynome folgender reellen Zahlen über den rationalen Zahlen [mm]\IQ[/mm] bestimmen soll:

(1) [mm]\wurzel{3}+\wurzel[3]{5}[/mm]
(2) [mm]\wurzel[3]{\wurzel{5}+2}-\wurzel[3]{\wurzel{5}-2}[/mm].

Und noch was, folgende Frage wurde uns gestellt, versteh ich aber leider net mal die Aussage, was ich da machen soll*g*:
(3) Bestimmt eine Zahl [mm]x\in\IR[/mm], so dass [mm]\IQ(a)=\IQ(\wurzel{2},\wurzel{3})[/mm]. Kann man [mm]a=\wurzel{6}[/mm] nehmen?

Ich danke euch schon mal für eure Hilfe...

        
Bezug
Minimalpolynom berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:28 So 16.05.2004
Autor: Marc

Hallo Dr_Schnaggels,

willkommen im MatheRaum :-)!

> Hallo alle miteinander, ich hab da mal ein kleines
> Problem.
>  Ich habe absolut keine Ahnung wie ich die Minimalpolynome
> folgender reellen Zahlen über den rationalen Zahlen [mm]\IQ[/mm]
> bestimmen soll:

Wie lautet denn der Vektorraum und wie lautet die Abbildung? Gibt es noch weitere Angaben zu dieser Frage?

Viele Grüße,
Marc

Bezug
                
Bezug
Minimalpolynom berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:38 So 16.05.2004
Autor: Dr_Schnaggles

Leider steht in der Aufgabenstellung sonst nichts, was mir weiterhelfen würde. Hier ist sie nochmal wörtlich wie sie uns gestellt wurde:

Findet die Minimalpolynome der folgenden reellen Zahlen über [mm]\IQ[/mm].
Und diese Frage bezieht sich auf die beiden reellen Zahlen (1) und (2).



Bezug
        
Bezug
Minimalpolynom berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:34 So 16.05.2004
Autor: Stefan

Hallo,

ich habe nicht viel Zeit, daher nur eine kurze Antwort:

Zu den Minimalpolynomen:

Wenn du das Minimalpolynom [mm] $m_a \in \IQ[X]$ [/mm] zu einem Element $a$ einer Körpererweiterung [mm] $L:\IQ$ [/mm] finden willst, dann suchst du dir zunächst ein $f [mm] \in \IQ[X]$ [/mm] mit $f(a)=0$. Wenn $f$ irreduzibel ist, dann gilt natürlich [mm] $f=m_a$. [/mm] Ansonsten ist [mm] $m_a$ [/mm] ein Teiler von $f$ in [mm] $\IQ[X]$. [/mm] Es gilt:

[mm] $Grad(m_a) [/mm] = [mm] [\IQ(a):\IQ]$. [/mm]

Versuche es jetzt mal damit...

>  (3) Bestimmt eine Zahl [mm]x\in\IR[/mm], so dass
> [mm]\IQ(a)=\IQ(\wurzel{2},\wurzel{3})[/mm]. Kann man [mm]a=\wurzel{6}[/mm]
> nehmen?

Nein, natürlich nicht. Stattdessen ist [mm] $a=\sqrt{2}+\sqrt{3}$ [/mm]  ein primitives Element von [mm] $\IQ(\wurzel{2},\wurzel{3}):\IQ$, [/mm] d.h. es gilt:

[mm] $\IQ(\wurzel{2},\wurzel{3})= \IQ(\sqrt{2}+\sqrt{3})$. [/mm]

Der Beweis ist recht einfach, versuche ihn bitte zunächst selber zu führen und melde dich wieder, wenn du Fragen hast.

Liebe Grüße
Stefan


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]