matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteMinimalpolynom bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Eigenwerte" - Minimalpolynom bestimmen
Minimalpolynom bestimmen < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Minimalpolynom bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:45 Sa 26.04.2008
Autor: Annanna

Aufgabe
Berechene das Minimalpolynom über [mm] \IR [/mm] von  $A= [mm] \pmat{0&1& 2&4\\-1&0&3&1\\0&0&0&1\\0&0&-1&0}\in [/mm] M(4x4, [mm] \IR)$ [/mm]  


Ich habe jetzt das char. Polynom bestimmt um die Eigenwerte zu berechnen (P(x) = [mm] x^4+2x^2+1 [/mm]
P(x) hat also keine reellen Eigenwerte...jetzt weiß ich nicht mehr weiter.ich soll doch das MinimlPolynom ausdrücklich über R bestimmen?!

und kann mir jemand generell erklären wie man mit Hilfe der Eigenwerte und dessen alg. Vielfachheit das Minimalpoynom betimmt?
Ich habe nur ein Beispiel aus der Vorlesung, dieses aber nicht 100 prozentig verstanden...Vielen Dank

ch habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Minimalpolynom bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:56 So 27.04.2008
Autor: MathePower

Hallo Annanna,

> Berechene das Minimalpolynom über [mm]\IR[/mm] von  [mm]A= \pmat{0&1& 2&4\\-1&0&3&1\\0&0&0&1\\0&0&-1&0}\in M(4x4, \IR)[/mm]
>
> Ich habe jetzt das char. Polynom bestimmt um die Eigenwerte
> zu berechnen (P(x) = [mm]x^4+2x^2+1[/mm]
>   P(x) hat also keine reellen Eigenwerte...jetzt weiß ich
> nicht mehr weiter.ich soll doch das MinimlPolynom
> ausdrücklich über R bestimmen?!
>  
> und kann mir jemand generell erklären wie man mit Hilfe der
> Eigenwerte und dessen alg. Vielfachheit das Minimalpoynom
> betimmt?
>  Ich habe nur ein Beispiel aus der Vorlesung, dieses aber
> nicht 100 prozentig verstanden...Vielen Dank

Das Minimalpolynom ist das jenige Polynom für das [mm]P\left(A\right)=0[/mm] (0 ist die Nullmatrix.

[mm]P\left(x\right)[/mm] läßt sich ja so schreiben:

[mm]P\left(x\right)=x^{4}+2*x^{2}+1=\left(x^{2}+1\right)^{2}[/mm]

Um das Mimimalpolynom herauszufinden gehe wie folgt vor:

Berechne zunächst [mm]B:=A*A+I[/mm] und prüfe ob das die Nullmatrix ist.

Dann berechne [mm]B*B[/mm] und prüfe wieder auf Nullmatrix.

>

>  
> ch habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Gruß
MathePower

Bezug
                
Bezug
Minimalpolynom bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:24 So 27.04.2008
Autor: Annanna

Hallo
und vielen Dank für deine Hilfe...ich dachte das Minimalpolynom bestimmt man über die Eigenwerte deswegen hat mich das ganze am Anfang etwas verwirrt :)

Ich habe jetzt folgendes raus:

für [mm] A^2 [/mm] trifft  [mm] A^2 [/mm] + 1 =0 nicht zu...

aber: [mm] A^4 [/mm] = [mm] -2(A^2) [/mm] - 1

also ist das Minimalplynom: [mm] x^4 [/mm] + [mm] 2x^2 [/mm] + 1  also genau das char. Polynom

Korrekt?



Bezug
                        
Bezug
Minimalpolynom bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:48 So 27.04.2008
Autor: felixf

Hallo

> und vielen Dank für deine Hilfe...ich dachte das Minimalpolynom bestimmt man über die
> Eigenwerte deswegen hat mich das ganze am Anfang etwas verwirrt :)

Das stimmt schon, allerdings liegen die Eigenwerte nicht immer im Grundkoerper. Allerdings haengt das Minimalpolynom nicht vom Grundkoerper ab, also ob du es ueber [mm] $\IC$ [/mm] bestimmst oder ueber [mm] $\IR$, [/mm] macht das keinen Unterschied. (Zumindest bei separablen Erweiterungen, aber das ist der Fall wenn der Grundkoerper [mm] $\IR$ [/mm] oder [mm] $\IQ$ [/mm] oder endlich oder so ist.)

Hier liegen die Eigenwerte allerdings nicht im Grundkoerper [mm] $\IR$, [/mm] also betrachtest du die Zerlegung in irreduzible Polynome. In diesem Fall ist's [mm] $(x^2 [/mm] + [mm] 1)^2$. [/mm] Genauso wie bei der Version mit Eigenwerten probierst du dann die Teiler (ueber [mm] $\IR$!) [/mm] davon durch.

> für [mm]A^2[/mm] trifft  [mm]A^2[/mm] + 1 =0 nicht zu...
>  
> aber: [mm]A^4[/mm] = [mm]-2(A^2)[/mm] - 1
>  
> also ist das Minimalplynom: [mm]x^4[/mm] + [mm]2x^2[/mm] + 1  also genau das
> char. Polynom

Genau. Du hattest [mm] $A^4$ [/mm] uebrigens gar nicht ausrechnen muessen, da nach dem Satz von Cayley-Hamilton das char. Polynom sowieso $A$ als `Nullstelle' hat.

LG Felix


Bezug
                                
Bezug
Minimalpolynom bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:49 So 27.04.2008
Autor: felixf

Hallo

> Das stimmt schon, allerdings liegen die Eigenwerte nicht
> immer im Grundkoerper. Allerdings haengt das Minimalpolynom
> nicht vom Grundkoerper ab, also ob du es ueber [mm]\IC[/mm]
> bestimmst oder ueber [mm]\IR[/mm], macht das keinen Unterschied.
> (Zumindest bei separablen Erweiterungen, aber das ist der
> Fall wenn der Grundkoerper [mm]\IR[/mm] oder [mm]\IQ[/mm] oder endlich oder
> so ist.)

Was ich grad noch vergessen hatte als Anmerkung: wenn dir das nichts sagt ist nicht weiter schlimm. Wenn du dir das nochmal anschaust wenn du etwas ueber Galois-Theorie weisst, dann kannst du das nachvollziehen ;-)

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]