matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStatistik (Anwendungen)Minimum für Summe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Statistik (Anwendungen)" - Minimum für Summe
Minimum für Summe < Statistik (Anwend.) < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Minimum für Summe: Tipp
Status: (Frage) beantwortet Status 
Datum: 15:45 Sa 11.07.2009
Autor: xPae

Aufgabe
Gegeben sind die Werte x1, x2, . . . , xn x [mm] \varepsilon [/mm] R. Für welche Werte von  x [mm] \varepsilon [/mm] R nimmt die Funktion:

[mm] f(\lambda)=\bruch{1}{n}*\summe_{i=1}^{n}(x_{i}-\lambda)^{2} [/mm]

minimale Werte an? Interpretieren Sie das Ergebnis.

Moin,

komme leider hier nicht so wirklich voran, obwohl es mir zunächst einfach erschien,denn:

Die Summe wird ja minimal, wenn [mm] \lambda [/mm] und jedes [mm] x_{i} [/mm] gleich wären, also Null. Aber da hier eine Funktion gegeben ist, denk da eher an Ableiten :)

Müsste ich jetzt einfach von :  [mm] (x_{i}-\lambda)^{2} [/mm]  das Minimum suchen?
Das müsste ja dann  [mm] \lambda=x_{i} [/mm] , aber iwie sinnlos xD
LG und Danke

xPae

        
Bezug
Minimum für Summe: Antwort
Status: (Antwort) fertig Status 
Datum: 16:02 Sa 11.07.2009
Autor: abakus


> Gegeben sind die Werte x1, x2, . . . , xn x [mm]\varepsilon[/mm] R.
> Für welche Werte von  x [mm]\varepsilon[/mm] R nimmt die Funktion:
>  
> [mm]f(\lambda)=\bruch{1}{n}*\summe_{i=1}^{n}(x_{i}-\lambda)^{2}[/mm]
>  
> minimale Werte an? Interpretieren Sie das Ergebnis.
>  Moin,
>  
> komme leider hier nicht so wirklich voran, obwohl es mir
> zunächst einfach erschien,denn:
>  
> Die Summe wird ja minimal, wenn [mm]\lambda[/mm] und jedes [mm]x_{i}[/mm]
> gleich wären, also Null. Aber da hier eine Funktion
> gegeben ist, denk da eher an Ableiten :)
>  
> Müsste ich jetzt einfach von :  [mm](x_{i}-\lambda)^{2}[/mm]  das
> Minimum suchen?
>  Das müsste ja dann  [mm]\lambda=x_{i}[/mm] , aber iwie sinnlos xD
>  LG und Danke
>  
> xPae

Hallo,
in der Praxis sind die [mm] x_i [/mm] irgendwelche Messwerte und das [mm] \lambda [/mm] ist eine Zahl, die man sucht, um einen möglichst guten "Mittelwert" für die verschiedenen voneinander abweichenden [mm] x_i [/mm] zu erhalten.
Der gegebenen Term ist die mittlere quadratische Abweichung der Messwerte [mm] x_i [/mm] vom Wert [mm] \lambda. [/mm]
Diese Abweichung ist tatsächslich am kleinsten, wenn alle Messwerte
1) übereinstimmen
und
2) mit dem Wert [mm] \lambda [/mm] identisch wären.
Gruß Abakus


Bezug
                
Bezug
Minimum für Summe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:10 Sa 11.07.2009
Autor: xPae

Moin,

> Hallo,
>  in der Praxis sind die [mm]x_i[/mm] irgendwelche Messwerte und das
> [mm]\lambda[/mm] ist eine Zahl, die man sucht, um einen möglichst
> guten "Mittelwert" für die verschiedenen voneinander
> abweichenden [mm]x_i[/mm] zu erhalten.
>  Der gegebenen Term ist die mittlere quadratische
> Abweichung der Messwerte [mm]x_i[/mm] vom Wert [mm]\lambda.[/mm]
>  Diese Abweichung ist tatsächslich am kleinsten, wenn alle
> Messwerte
>  1) übereinstimmen
> und
>  2) mit dem Wert [mm]\lambda[/mm] identisch wären.
>  Gruß Abakus
>  

Kann man auch ein [mm] \lambda [/mm] bestimmen, wenn alle Messwerte unterschiedlich sind? Das müsste doch dann einfach der Mittelwert von allen x-Werten sein, oder?

Gru´ß

Bezug
                        
Bezug
Minimum für Summe: Antwort
Status: (Antwort) fertig Status 
Datum: 16:23 Sa 11.07.2009
Autor: abakus


> Moin,
>  
> > Hallo,
>  >  in der Praxis sind die [mm]x_i[/mm] irgendwelche Messwerte und
> das
> > [mm]\lambda[/mm] ist eine Zahl, die man sucht, um einen möglichst
> > guten "Mittelwert" für die verschiedenen voneinander
> > abweichenden [mm]x_i[/mm] zu erhalten.
>  >  Der gegebenen Term ist die mittlere quadratische
> > Abweichung der Messwerte [mm]x_i[/mm] vom Wert [mm]\lambda.[/mm]
>  >  Diese Abweichung ist tatsächslich am kleinsten, wenn
> alle
> > Messwerte
>  >  1) übereinstimmen
> > und
>  >  2) mit dem Wert [mm]\lambda[/mm] identisch wären.
>  >  Gruß Abakus
>  >  
>
> Kann man auch ein [mm]\lambda[/mm] bestimmen, wenn alle Messwerte
> unterschiedlich sind? Das müsste doch dann einfach der
> Mittelwert von allen x-Werten sein, oder?

Nicht ganz. Nimm mal die 10 Werte
1,1,1,1,1,1,1,1,1 und 11. Die Summe ist 20, der Mittelwert 2.
Die quadatischen Abweichungen von [mm] \lambda=2 [/mm] sind neunmal [mm] 1^2 [/mm] und einmal [mm] 9^2=81. [/mm] Der Mittelwert dieser quadratischen Abweichungen ist (1+1+1+1+1+1+1+1+1+81):10=9.
Wenn du für [mm] \lambda [/mm] einen geeigneten anderen Wert wählen würdest (teste mal 1,99 und 2,01), kommst du auf eine kleinere mittlere quadratische Abweichung.
Gruß Abakus

>  
> Gru´ß


Bezug
                                
Bezug
Minimum für Summe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:46 Sa 11.07.2009
Autor: xPae

Danke für Deine Antwort. Ich bin so auf den Mittelwert gekommen:

[mm] f(\lambda)=\bruch{1}{n}*\summe_{i=1}^{n}(x_{i}-\lambda)^{2} [/mm]

[mm] f(\lambda)=\bruch{1}{n}\summe_{i=1}^{n}(x_{i})^{2}-2*\lambda*\bruch{1}{n}(\summe_{i=1}^{n}x_{i})+\lamda^{2} [/mm]

[mm] f'(\lambda)=-2*\bruch{1}{n}(\summe_{i=1}^{n}x_{i})+2*\lambda [/mm]
0 setzen -> Minimum

[mm] \lambda=\bruch{1}{n}(\summe_{i=1}^{n}x_{i})=\overline{x} [/mm]

2te Ableitung ergäbe 2 -> Minimum.
Ist die Rechnung jetzt falsch?   Ich komme bei deinem Beispiel mit dem Mittelwert auf ein Wert von 9 , mit 1,9 auf 9,01 und 2,1 auf 9,01.

Liebe Grüße
und nochmal Danke

xPae

Bezug
                                        
Bezug
Minimum für Summe: Antwort
Status: (Antwort) fertig Status 
Datum: 18:49 Sa 11.07.2009
Autor: leduart

Hallo
Deine Herleitung ist richtig, was abakus gesagt hat versteh ich auch nicht.
Gruss leduart

Bezug
                                                
Bezug
Minimum für Summe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:59 Sa 11.07.2009
Autor: abakus


> Hallo
>  Deine Herleitung ist richtig, was abakus gesagt hat
> versteh ich auch nicht.
>  Gruss leduart

Tut mir leid. Ich habe ein unglückliches "Gegenbeispiel" konstruiert, das leider kein Gegenbeispiel war (und nicht selbst nachgerechnet).
Wenn ich allerdings zwei meiner neun Einsen ändere, und zwar in je eine 0 und eine 2, bleibt der Mittelwert erhalten. Deren quadratische Abweichungen vom Mittelwert 2 (das sind [mm] 1^2 [/mm] + [mm] 1^2) [/mm] werden jedoch zu [mm] 2^2+0^2 [/mm] und ändern sich damit. Der Mittelwert der Daten ist also nicht in jedem Fall das günstigste [mm] \lambda. [/mm]
Gruß Abakus

Bezug
                                                        
Bezug
Minimum für Summe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:34 Sa 11.07.2009
Autor: leduart

Hallo
Die Rechng zeigt doch, dass [mm] \lambda [/mm] = MW das einzige innere minimum ist. du muesstest also zeigen, dass es am Rande des Def. Gebietes von [mm] \lambda [/mm] ein Randmin. gibt.
Dass es ein min ist, hat nichts mit dem Wert der Quadratsumme im Minimum zu tun .
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]