matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungMittelpunktberechnung auf Gera
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra / Vektorrechnung" - Mittelpunktberechnung auf Gera
Mittelpunktberechnung auf Gera < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mittelpunktberechnung auf Gera: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:33 So 15.01.2006
Autor: headbanger

Aufgabe
Um den Mittelpunkt einer Geraden auszurechnen habe ich folgende Formel:

$ [mm] [(x-x_1) [/mm] : [mm] 2/(y-y_1)] [/mm] $  

Wenn jetzt nur ein Punkt auf der Geraden g angegeben ist, brauche ich ja noch den 2.Punkt um ihn in die "Formel" einzusetzen.

Meine Frage:

1.Wo finde ich diesen Punkt

2.Wie berechne ich ihn?

Es ist zwar keine allzu hohe Frage, aber da ich keine große Übung in Mathe habe und hin und wieder ein Loch existiert, helf t mir bitte ;)

mfg

Headbanger

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Mittelpunktberechnung auf Gera: Nachgefragt
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:59 So 15.01.2006
Autor: Zwerglein

Hi, Ruuudi,

Da hab' ich ein Verständnisproblem:
Eine Gerade ist unendlich groß, hat weder Anfang noch Ende und schon gar keinen Mittelpunkt!

Also irgendwas stimmt bei Deiner Aufgabenstellung nicht!

Gib' mal ein Zahlenbeispiel; vielleicht wird's dann klarer!

mfG!
Zwerglein

Bezug
                
Bezug
Mittelpunktberechnung auf Gera: Vermutung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:50 So 15.01.2006
Autor: Disap

Moin zusammen.
> Hi, Ruuudi,
>  
> Da hab' ich ein Verständnisproblem:
>  Eine Gerade ist unendlich groß, hat weder Anfang noch Ende
> und schon gar keinen Mittelpunkt!
>  
> Also irgendwas stimmt bei Deiner Aufgabenstellung nicht!
>  
> Gib' mal ein Zahlenbeispiel; vielleicht wird's dann
> klarer!
>  
> mfG!
>  Zwerglein

Er meint bestimmt den Mittelpunkt einer Strecke. Z. B. des Vektors  

[mm] \vec{a} [/mm] =  [mm] \vektor{2 \\ 2 \\ 2}. [/mm]

hmmm, wie war das noch mal? Wenn man einen Würfel mit gegeben Punkten hatte, dann gabs Graden, die den Mittelpunkt einer Strecke schneiden. Soweit ich mich erinnere, wars dann auch Möglich, für jede einzelne Strecke des Würfels eine Geradengleichung aufzustellen und von der dann die Mitte zu bestimmen (die Gerade ist in diesem Fall aber fiktiv auf ein Intervall begrenzt). Nur um mal wieder ein bisschen zu schwafeln :-)

Viele Grüße
Disap

Bezug
        
Bezug
Mittelpunktberechnung auf Gera: Antwort
Status: (Antwort) fertig Status 
Datum: 13:11 Mo 16.01.2006
Autor: Julius

Hallo!

Den Mittelpunkt [mm] $M=(m_1/m_2)$ [/mm] einer Strecke zwischen [mm] $A=(a_1/a_2)$ [/mm] und [mm] $B=(b_1/b_2)$ [/mm] bestimmt du mittels

[mm] $\pmat{m_1 \\ m_2} [/mm] = [mm] \pmat{a_1 \\ a_2} [/mm] + [mm] \frac{1}{2} \cdot \left[ \pmat{b_1 \\ b2} - \pmat{a_1 \\ a_2} \right] [/mm] = [mm] \frac{1}{2} \cdot \left[\pmat{a_1 \\a_2} + \pmat{b_1 \\ b_2} \right]$. [/mm]

Liebe Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]