matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationMittelwertsatz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Differentiation" - Mittelwertsatz
Mittelwertsatz < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mittelwertsatz: Hilfe, Schwierigkeit
Status: (Frage) beantwortet Status 
Datum: 17:27 Sa 26.03.2011
Autor: Balsam

Aufgabe
Ich muss mit dem Mittelwertsatz der Differentialrechnung zeigen, dass gilt
|cos b - cos a| [mm] \le [/mm] |b - a|    a,b [mm] \in \IR [/mm]

gilt.

Ich versuche mal einen Ansatz

[mm] \bruch{cos b - cos a}{b-a} [/mm] = cos ´ [mm] x_{0}= [/mm] - sin [mm] x_{0} [/mm]

(Habe es nach einem Besipiel gemacht)

        
Bezug
Mittelwertsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 17:33 Sa 26.03.2011
Autor: MathePower

Hallo Balsam,

> Ich muss mit dem Mittelwertsatz der Differentialrechnung
> zeigen, dass gilt
>  |cos b - cos a| [mm]\le[/mm] |b - a|    a,b [mm]\in \IR[/mm]
>  
> gilt.
>  Ich versuche mal einen Ansatz
>  
> [mm]\bruch{cos b - cos a}{b-a}[/mm] = cos ´ [mm]x_{0}=[/mm] - sin [mm]x_{0}[/mm]


Verwende jetzt Betragsstriche und schätze

[mm]\vmat{-sin\left(x_{0}\right)}[/mm]

ab.


>  
> (Habe es nach einem Besipiel gemacht)



Gruss
MathePower

Bezug
                
Bezug
Mittelwertsatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:40 Sa 26.03.2011
Autor: Balsam

Wie mache ich das den, wenn ich kein Taschenrechner benutzen darf?

Ich weiß
sin 0 = 0
sin 90 = 1

aber wie schätze ich das nun ab?


Bezug
                        
Bezug
Mittelwertsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 17:42 Sa 26.03.2011
Autor: Teufel

Hi!

Fällt dir denn ein Wert ein, den |sin(x)| niemals übersteigt?

Bezug
                                
Bezug
Mittelwertsatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:56 Sa 26.03.2011
Autor: Balsam

x wird nie > 1

Also
| -sin x | [mm] \ge [/mm] 1
[mm] \Rightarrow [/mm] |cos b - cos a| = |-sin [mm] x_{0}| [/mm] |b-a| [mm] \le [/mm] |a-b|

So?

Bezug
                                        
Bezug
Mittelwertsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 18:00 Sa 26.03.2011
Autor: MathePower

Hallo Balsam,

> x wird nie > 1


Hier meinst Du wohl [mm]\vmat{\sin\left(x\right)}[/mm]


>  
> Also
>  | -sin x | [mm]\ge[/mm] 1
> [mm]\Rightarrow[/mm] |cos b - cos a| = |-sin [mm]x_{0}|[/mm] |b-a| [mm]\le[/mm] |a-b|
>  
> So?


Genau so.


Gruss
MathePower

Bezug
                                                
Bezug
Mittelwertsatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:27 So 27.03.2011
Autor: Bilmem


> Hallo Balsam,
>  
> > x wird nie > 1
>  
>
> Hier meinst Du wohl [mm]\vmat{\sin\left(x\right)}[/mm]
>  
>
> >  

> > Also
>  >  | -sin x | [mm]\ge[/mm] 1
> > [mm]\Rightarrow[/mm] |cos b - cos a| = |-sin [mm]x_{0}|[/mm] |b-a| [mm]\le[/mm] |a-b|
>  >  
> > So?
>
>
> Genau so.
>  
>
> Gruss
>  MathePower


[mm]\Rightarrow[/mm] |cos b - cos a| = |-sin [mm]x_{0}|[/mm] |b-a| [mm]\le[/mm] |b-a|

so ist das doch richtig ? nicht a-b sondern b-a ?!?!

Bezug
                                                        
Bezug
Mittelwertsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 23:31 So 27.03.2011
Autor: schachuzipus

Hallo Bilmem,


> > Hallo Balsam,
>  >  
> > > x wird nie > 1
>  >  
> >
> > Hier meinst Du wohl [mm]\vmat{\sin\left(x\right)}[/mm]
>  >  
> >
> > >  

> > > Also
>  >  >  | -sin x | [mm]\ge[/mm] 1
> > > [mm]\Rightarrow[/mm] |cos b - cos a| = |-sin [mm]x_{0}|[/mm] |b-a| [mm]\le[/mm] |a-b|
>  >  >  
> > > So?
> >
> >
> > Genau so.
>  >  
> >
> > Gruss
>  >  MathePower
>
>
> [mm]\Rightarrow[/mm] |cos b - cos a| = |-sin [mm]x_{0}|[/mm] |b-a| [mm]\le[/mm] |b-a| [ok]
>  
> so ist das doch richtig ? nicht a-b sondern b-a ?!?!

Macht das denn betraglich so einen großen Unterschied?

[mm]|a-b|=|(-1)\cdot{}(a-b)|=|-a+b|=|b-a|[/mm]

Ist also Jacke wie Hose ...

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]