matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRegelungstechnikModellbildung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Regelungstechnik" - Modellbildung
Modellbildung < Regelungstechnik < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Regelungstechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Modellbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:59 Sa 27.03.2010
Autor: MaxPowder

Aufgabe
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Bestimmen Sie die Differentialgleichung der dargestellten Anordnung, wenn der Volumenstrom [mm] Q_{e}(t) [/mm] die Eingangsgröße und die Druckdifferenz
[mm] \Delta [/mm] p = [mm] p_{1}(t) [/mm] - [mm] p_{\infty} [/mm] die Ausgansggröße ist.
[Dateianhang nicht öffentlich]

Komm einfach nicht drauf :/
kenn zwar das Speichergesetz und das Gefällgesetz, kanns aber nicht verknüpfen.

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Modellbildung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:23 Sa 27.03.2010
Autor: Frasier

Hi,
> kenn zwar das Speichergesetz und das Gefällgesetz, kanns
> aber nicht verknüpfen.

für die, die das nicht kennen würde ich beides mal hinschreiben.
lg
F.

Bezug
        
Bezug
Modellbildung: Gefälle/Drossel Gesetz
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:07 Sa 27.03.2010
Autor: MaxPowder

Also (hier nur meine Überlegungen, falls es nicht korrekt ist, hoffe ich auf Berichtigung!)

Zunächst zum Gefälle Gesetz:
[Dateianhang nicht öffentlich]

Q(t) = [mm] \bruch{1}{W_{L}} [/mm] * [mm] \Delta [/mm] p
mit [mm] \Delta [/mm] p = [mm] (p_{1} [/mm] - [mm] p_{2}) [/mm]

und zum Speichergesetz:
[Dateianhang nicht öffentlich]
P'(t) = [mm] \bruch{1}{K_{B}} [/mm] * Q(t)

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Anhang Nr. 2 (Typ: jpg) [nicht öffentlich]
Bezug
        
Bezug
Modellbildung: Drei Gleichungen
Status: (Antwort) fertig Status 
Datum: 10:19 So 28.03.2010
Autor: Infinit

Hallo Maxpowder,
unter der Voraussetzung, dass Deine Basisgleichungen richtig sind, bekommt Du doch für jedes Teilgebiet Deiner Anordnung eine Gleichung, insgesamt also drei. Diese kannst Du dann ableiten und ineinander einsetzen.
$$ [mm] Q_e [/mm] (t) = [mm] \bruch{1}{W_{L1}} [/mm] ( [mm] p_1(t) [/mm] - [mm] p_2 [/mm] (t)) $$
für den linken Bereich, dann für den Speicherbereich
$$ [mm] p_2^{'} [/mm] (t) = [mm] \bruch{1}{K_B} Q_B [/mm] (t) $$ und für die untere Drossel
$$ [mm] Q_B [/mm] (t) = [mm] \bruch{1}{W_{L2}} [/mm] ( [mm] p_2 [/mm] (t) - [mm] p_{\infty} [/mm] (t)) $$
Das jetzt entsprechend ableiten und alles ineineander einsetzen.
Viel Ergolg dabei,
Infinit

Bezug
                
Bezug
Modellbildung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:16 So 28.03.2010
Autor: MaxPowder


> linken Bereich, dann für den Speicherbereich
>  [mm]p_2^{'} (t) = \bruch{1}{K_B} Q_B (t)[/mm] und für die untere
> Drossel
>  [mm]Q_B (t) = \bruch{1}{W_{L2}} ( p_2 (t) - p_{\infty} (t))[/mm]
>  

das muss heißen
[mm] Q_{a}(t) [/mm] = [mm] \bruch{1}{W_{L2}}(p_{2}(t) [/mm] - [mm] p_{\infty}(t)) [/mm]
oder?

Aber genau da häng ich, es muß ja letzendlich [mm] Q_{e}(t) [/mm] in abhängigkeit von [mm] \Delta [/mm] p dastehen haben oder?
kann man davon ausgehen, dass [mm] p_{2} [/mm] = [mm] p_{1} [/mm] - [mm] p_{\infty} [/mm] und somit [mm] \Delta [/mm] p ist? Das würde das um einiges vereinfachen!

Bezug
                        
Bezug
Modellbildung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Di 30.03.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Regelungstechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]