matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTrigonometrische FunktionenModellierung Funktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Trigonometrische Funktionen" - Modellierung Funktionen
Modellierung Funktionen < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Modellierung Funktionen: Winkel
Status: (Frage) beantwortet Status 
Datum: 19:11 Mi 28.02.2007
Autor: Lambda

Hallo!

Wir haben gerade das Thema Modellierung mit trigonometrischen Funktionen und normalerweise verstehe ich das auch. Nur mit dieser Aufgabe habe ich echte Probleme, da ich nicht einmal weiß, ob man das mit Modellirung herausfinden kann. Kann mir jemand helfen?

Die Aufgabe:

Aus vier gleichen Brettern (3 cm) soll eine oben offene Rinne hergestellt werden, so dass zwei ihrer Wände parallel sind. Wie ist der Winkel [mm] \alpha [/mm] zwischen den beiden anderen Wänden zu wählen, damit das Fassungsvermögen der Rinne möglichst groß wird?

Die Rinne besteht also aus zwei parallelen Geraden an deren Unterseiten ein Dreieck aus ebenfalls zwei Geraden ist.

Hilfe?

Danke!

Gruß, Lamda :-)






        
Bezug
Modellierung Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:20 Mi 28.02.2007
Autor: M.Rex

Hallo

> Hallo!
>  
> Wir haben gerade das Thema Modellierung mit
> trigonometrischen Funktionen und normalerweise verstehe ich
> das auch. Nur mit dieser Aufgabe habe ich echte Probleme,
> da ich nicht einmal weiß, ob man das mit Modellirung
> herausfinden kann. Kann mir jemand helfen?
>  
> Die Aufgabe:
>  
> Aus vier gleichen Brettern (3 cm) soll eine oben offene
> Rinne hergestellt werden, so dass zwei ihrer Wände parallel
> sind. Wie ist der Winkel [mm]\alpha[/mm] zwischen den beiden anderen
> Wänden zu wählen, damit das Fassungsvermögen der Rinne
> möglichst groß wird?
>  
> Die Rinne besteht also aus zwei parallelen Geraden an deren
> Unterseiten ein Dreieck aus ebenfalls zwei Geraden ist.
>  
> Hilfe?

Yep, so ist es.

>  
> Danke!
>  
> Gruß, Lamda :-)
>  
>

Und von diesem Dreieck suchst du jetzt den Winkel [mm] \alpha [/mm] an der Unterkante der Rinne, so dass der Flächeninhalt maximal wird.

Tipp: Es gilt: [mm] A=\bruch{g*h}{2} [/mm]
und:

[mm] h²=(\bruch{g}{2})²+3² [/mm]

sowie: [mm] tan(\bruch{\alpha}{2})=\bruch{\bruch{g}{2}}{h}. [/mm]

Marius



Bezug
        
Bezug
Modellierung Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:51 Mi 28.02.2007
Autor: Zwerglein

Hi, Lambda,

also wenn ich das richtig verstanden habe, dann ist der Querschnitt Deiner Rinne ein gleichschenkliges Dreieck, das auf der Spitze steht, mit aufgesetztem Rechteck.

Die Querschnittsfläche soll demnach maximal werden.

Der Winkel an der Spitze ist [mm] \alpha; [/mm] für die weitere Rechnung erweist es sich als Vorteil, [mm] \bruch{\alpha}{2} [/mm] = [mm] \beta [/mm] zu setzen und die Hälfte der Grundlinie des Dreiecks x, die Höhe des Dreiecks h zu nennen.

Die Querschnittsfläche der Rinne ist dann:

F = 3*2x + [mm] 2*\bruch{1}{2}*x*h [/mm]

Über die Definitionen der trig.Fkt am rechtwinklige Dreieck erhält man dann die Größen x und h in Abhängigkeit vom Winkel [mm] \beta: [/mm]

x = [mm] 3*sin(\beta); [/mm]  h = [mm] 3*cos(\beta) [/mm]

Und das alles eingesetzt ergibt

[mm] F(\beta) [/mm] = [mm] 18*sin(\beta) [/mm] + [mm] 9*sin(\beta)*cos(\beta) [/mm]

Und diese Funktion musst Du nun ableiten, die Ableitung =0 setzen und [mm] \beta [/mm] ausrechnen. Damit erhältst Du auch [mm] \alpha [/mm] = [mm] 2*\beta. [/mm]

Denk' erst mal drüber nach!

mfG!
Zwerglein

Bezug
                
Bezug
Modellierung Funktionen: Alpha
Status: (Frage) beantwortet Status 
Datum: 17:34 Do 01.03.2007
Autor: Lambda

Hi! Danke für die Antwort!
Aber wenn ich das jetzt richtig verstehe, dann ist    [mm] \alpha [/mm] = 2 * [mm] \beta, [/mm] also [mm] \alpha [/mm] = [mm] \alpha [/mm] ?

Heißt das dann, dass es egal ist welchen Winkel ich nehme, da die Bretter ja alle gleich sind?

Gruß, Lambda :-)

Bezug
                        
Bezug
Modellierung Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:52 Do 01.03.2007
Autor: Zwerglein

Hi, Lambda,

> Hi! Danke für die Antwort!
>  Aber wenn ich das jetzt richtig verstehe, dann ist    
> [mm]\alpha[/mm] = 2 * [mm]\beta,[/mm] also [mm]\alpha[/mm] = [mm]\alpha[/mm] ?
>  
> Heißt das dann, dass es egal ist welchen Winkel ich nehme,
> da die Bretter ja alle gleich sind?

Natürlich nicht!
Du musst doch erst mal dasjenige [mm] \beta [/mm] ausrechnen, für das [mm] F(\beta) [/mm] maximal ist! Wenn Du dieses [mm] \beta [/mm] hast, verdoppelst Du's und kriegst so den Winkel [mm] \alpha [/mm] raus!

mfG!
Zwerglein


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]