matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraModul und Ideal
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - Modul und Ideal
Modul und Ideal < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Modul und Ideal: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:52 Mo 21.06.2004
Autor: Dana22

Hey Leute,
hier ist wieder die Dana (und ihre Gruppe) und hat wieder ein kleines Problem. Ich hätte gerne einen kleinen Denkanstoß zu folgender Aufgabe.


Seien L, N Untermoduln des R-Molduls M.

Zeige: (L : M) := [mm]\{[/mm][mm]r\in\[/mm]R|[mm]r*n\in\[/mm]L,für alle[mm]n\in\N[/mm] N [mm]\}[/mm] (hier müsst ihr euch eine geschweifte Klammer zu denken. das Ding spinnt!!) ist ein Ideal.
(Marcel: korrigiert! Klick mal auf Quelltext, dann siehst du, was ich getan habe ;-))


        
Bezug
Modul und Ideal: Antwort
Status: (Antwort) fertig Status 
Datum: 13:56 Di 22.06.2004
Autor: Julius

Liebe Dana!

> Seien L, N Untermoduln des R-Molduls M.
>  
> Zeige: (L : M) := [mm]\{[/mm][mm]r\in\[/mm]R|[mm]r*n\in\[/mm]L,für alle[mm]n\in\N[/mm] N [mm]\}[/mm]
> ist ein Ideal.

Zu zeigen ist:

(1) $0 [mm] \in [/mm] (L:M)$,
(2) $r [mm] \in [/mm] (L:M), \ r' [mm] \in (L:M)\qquad \Rightarrow \qquad [/mm] r-r' [mm] \in [/mm] (L:M)$,
(3) $r [mm] \in (L:M),\, [/mm] r' [mm] \in [/mm] R [mm] \qquad \Rightarrow \qquad [/mm] r'r [mm] \in [/mm] (L:M)$.

Alle drei Eigenschaften folgen aber leicht:

zu (1):

Offenbar gilt für alle $n [mm] \in [/mm] N$:

$0 * n = 0 [mm] \in [/mm] L$,

da $L$ ein Untermodul des $R$-Moduls $M$ ist und somit das neutrale Element von $(M,+)$ enthält.

zu (2):

Aus $r * n [mm] \in [/mm] L$ und $r' * n [mm] \in [/mm] L$ für alle $n [mm] \in [/mm] N$ folgt auch:

$(r - r') * n = r* n - r' * n [mm] \in [/mm] L$

für alle $n [mm] \in [/mm] N$, da $L$ ein Untermodul des $R$-Moduls $M$ ist und somit bezüglich der Addition und (additiven) Inversenbildung abgeschlossen ist.

zu (3):

Aus $r * n [mm] \in [/mm] L$ für alle $n [mm] \in [/mm] N$ folgt mit $r' [mm] \in [/mm] R$:

$(r' * r)*n = r' * (r * n) [mm] \in [/mm] L$

für alle $n [mm] \in [/mm] N$, da $L$ ein Untermodul des $R$-Moduls $M$ ist und somit $L$ bezüglich der Multiplikation mit Ringelementen abgeschlossen ist.

Bezug
                
Bezug
Modul und Ideal: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:19 So 27.06.2004
Autor: Dana22

Guten Abend Julius,
darf ich dich nochmal darum bitten, Kontrolleur zu spielen?
Danke Dana.

Bezug
                        
Bezug
Modul und Ideal: Antwort
Status: (Antwort) fertig Status 
Datum: 23:55 So 27.06.2004
Autor: Julius

Liebe Dana!

Ja, das ist alles richtig und hervorragend aufgeschrieben. Es ist ja aber auch genau das, was ich geschrieben hatte, nur noch etwas ausführlicher.

Super! [super]

Liebe Grüße
Julius



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]