matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieModuln von Z
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Zahlentheorie" - Moduln von Z
Moduln von Z < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Moduln von Z: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 21:08 Do 12.04.2012
Autor: ella87

Aufgabe
Zeigen Sie, dass (M,+) mit [mm]M=\{ax+by+cz|x,y,z \in \IZ \}[/mm] ein Modul von [mm]\IZ[/mm] ist.
Um welchen Modultyp (d.h. [mm]M=m \IZ[/mm] mit [mm]m \in \IN[/mm], m=?) handelt es sich?

ich grübel grade an der 2. Frage.
Ich weiß, dass jeder Modul aus den ganzzahligen Vielfachen seiner kleinsten positiven Zahl besteht. Ich frage mich also gerade was denn diese kleinste Zahl ist, die ich als Linearkombination von 3 Zahlen darstellen kann.

Erst dachte ich es sei das Minimum von a,b,c. Aber das kann man mit Zahlenbeispiele leicht widerlegen (2,3,7 dann ist 1=2*2-1*3+0*7).
Ich vermute, dass es der ggT(a,b,c) ist. Der lässt sich auf jedenfall als Linearkombination von a,b,c mit ganzzahligen Vorfaktoren darstellen, aber ist das auch die kleinste Zahl...?

oder kann man die 1 sogar immer darstellen? Nein, oder?

        
Bezug
Moduln von Z: Antwort
Status: (Antwort) fertig Status 
Datum: 10:20 Fr 13.04.2012
Autor: felixf

Moin!

> Zeigen Sie, dass (M,+) mit [mm]M=\{ax+by+cz|x,y,z \in \IZ \}[/mm]
> ein Modul von [mm]\IZ[/mm] ist.
>  Um welchen Modultyp (d.h. [mm]M=m \IZ[/mm] mit [mm]m \in \IN[/mm], m=?)
> handelt es sich?
>
>  ich grübel grade an der 2. Frage.
>  Ich weiß, dass jeder Modul aus den ganzzahligen
> Vielfachen seiner kleinsten positiven Zahl besteht. Ich
> frage mich also gerade was denn diese kleinste Zahl ist,
> die ich als Linearkombination von 3 Zahlen darstellen
> kann.
>  
> Erst dachte ich es sei das Minimum von a,b,c. Aber das kann
> man mit Zahlenbeispiele leicht widerlegen (2,3,7 dann ist
> 1=2*2-1*3+0*7).
> Ich vermute, dass es der ggT(a,b,c) ist.

Das stimmt.

> Der lässt sich auf jedenfall als Linearkombination von a,b,c mit
> ganzzahligen Vorfaktoren darstellen, aber ist das auch die
> kleinste Zahl...?

Das musst du zeigen. Sei $M = m [mm] \IZ$ [/mm] und sei $ggT(a, b, c) = d$, und $d = [mm] \lambda_1 [/mm] a + [mm] \lambda_2 [/mm] b + [mm] \lambda_3 [/mm] c$ mit [mm] $\lambda_1, \lambda_2, \lambda_3 \in \IZ$. [/mm]

Wegen $d = [mm] \lambda_1 [/mm] a + [mm] \lambda_2 [/mm] b + [mm] \lambda_3 [/mm] c$ gilt $d [mm] \in [/mm] M$, also $m [mm] \mid [/mm] d$.

Weiterhin gibt es [mm] $\mu_1, \mu_2, \mu_3 \in \IZ$ [/mm] mit $m = [mm] \mu_1 [/mm] a + [mm] \mu_2 [/mm] b + [mm] \mu_3 [/mm] c$. Wegen $d [mm] \mid [/mm] a$, $d [mm] \mid [/mm] b$, $d [mm] \mid [/mm] c$ kannst du $d [mm] \mid [/mm] m$ folgern.

Also gilt $m [mm] \mid [/mm] d$ und $d [mm] \mid [/mm] m$. Was folgt daraus?

> oder kann man die 1 sogar immer darstellen? Nein, oder?

Nein. Gegenbeispiel: $a = b = c = 2$. Dann ist $M = 2 [mm] \IZ$ [/mm] und 1 kann nicht so dargestellt werden.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]