matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeModulo Äquivalenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Moduln und Vektorräume" - Modulo Äquivalenz
Modulo Äquivalenz < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Modulo Äquivalenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:00 Di 06.11.2007
Autor: MrPink

Moin Leute, ich habe eine Frage, und zwar warum folgenende Äquivalenz gilt:

[mm] w^{r} \equiv 1 \mod p \Leftrightarrow ur \equiv 0 \mod p-1 [/mm]
Wobei p eine Primzahl ist, ein g ein Generator für F*(p). Weiter lässt sich dann das Element w erzeugen durch [mm] w \equiv g^{u} \mod p [/mm]. Dann gilt auch noch n = p*q , wobei auch q eine Primzahl ist, und es gilt:
[mm] w^{r} \equiv 1 \mod n [/mm]

Aber warum gilt das ? Hat vielleicht der Chinesische Restklassensatz was damit zu Tun ?

Ich komme nur auf
[mm] w^{r} \equiv 1 \mod p \Leftrightarrow g^{ur} \equiv 1 \mod p [/mm]
aber nicht weiter, kann mir jemand helfen ?


        
Bezug
Modulo Äquivalenz: Antwort
Status: (Antwort) fertig Status 
Datum: 08:22 Di 06.11.2007
Autor: statler

Guten Morgen!

> Ich komme nur auf
> [mm]w^{r} \equiv 1 \mod p \Leftrightarrow g^{ur} \equiv 1 \mod p[/mm]
>  
> aber nicht weiter, kann mir jemand helfen ?

Naja, g soll ein Generator in einer Gruppe mit p-1 Elementen sein. Welche Potenzen von g sind dann gleich dem neutralen Element?
(Antwort: Die Vielfachen der Gruppenordnung.)

Gruß aus HH-Harburg
Dieter

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]