matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisMöbius Transformation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Komplexe Analysis" - Möbius Transformation
Möbius Transformation < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Möbius Transformation: Abbildung auf obere Halbebene
Status: (Frage) beantwortet Status 
Datum: 02:05 So 24.02.2008
Autor: TRANSLTR

Aufgabe
Sei [mm] M_{1} [/mm] = {z [mm] \in \IC: [/mm] |z| < 1} die offene Kreisscheibe und [mm] M_{2} [/mm] = {z [mm] \in \IC: [/mm] Im(z) > 0} die obere Halbebene. Betrachte die Funktion
f: [mm] M_{1} [/mm] -> [mm] M_{2}, [/mm] f(z) = i [mm] \bruch{1 + z}{1 - z} [/mm]
a) Zeigen Sie, dass die Funktion f bijektiv ist.
b) Bestimmen Sie eine Formel für die inverse Funktion [mm] f^{-1}: M_{2} [/mm] -> [mm] M_{1} [/mm]

Zu a)
Bijektiv heisst die Funktion ist surjektiv (der ganze Bildbereich der oberenen Halbebene wird ausgenutzt) und injektiv (jeder Wert x wird auf ein eindeutiges f(x) abgebildet).
Ich habe mir gedacht, dass man die Surjektivität bestätigen kann, indem man Im(z) > 0 & Re(z) > 0 beweist.
i [mm] \bruch{1 + z}{1 - z} [/mm] = [mm] \bruch{i(x + iy) + i}{1 - (x + iy)} [/mm] = [mm] \bruch{ix - y^{2} + i}{(1 - x) - iy)}. [/mm]
Jetzt konjugiert erweitern (-> 3. Binom)
[mm] \bruch{(ix - y^{2} + i) (1 - x + iy)}{(1 - x)^{2} + y^{2})} [/mm]
= [mm] \bruch{-xy - y^{2} + xy^{2} - y)}{(1 - x)^{2} + y^{2})} [/mm] + i [mm] \bruch{-x^{2} - y^{3} + 1}{(1 - x)^{2} + y^{2})}. [/mm]
Hier komme ich nicht weiter..ich versteh' nicht wie jetzt der Real- und Imaginärteil > 0 sind...

Wie beweist man denn die Injektivität??

Zu b)
Kann man die Umkehrfunktion berechnen, indem man f(z) = Bild = b setzt und auf z auflöst? Konkret wäre das:
b = [mm] \bruch{iz + i}{1 - z} [/mm] || * (1 - z)
b - bz = iz + i
z(i + b) = b - i
z = [mm] \bruch{b - i}{i + b}. [/mm] Stimmt das denn?

Ich freue mich auf eure Lösungsvorschläge...



        
Bezug
Möbius Transformation: Antwort
Status: (Antwort) fertig Status 
Datum: 06:38 Mo 25.02.2008
Autor: Somebody


> Sei [mm]M_{1} = \{z \in \IC: |z| < 1\}[/mm] die offene Kreisscheibe
> und [mm]M_{2} = \{z \in \IC: Im(z) > 0\}[/mm] die obere Halbebene.
> Betrachte die Funktion
>  [mm]f: M_{1} \rightarrow M_{2}, f(z) = i \bruch{1 + z}{1 - z}[/mm]
>  a)
> Zeigen Sie, dass die Funktion f bijektiv ist.
>  b) Bestimmen Sie eine Formel für die inverse Funktion
> [mm]f^{-1}: M_{2}[/mm] -> [mm]M_{1}[/mm]
>  Zu a)
>  Bijektiv heisst die Funktion ist surjektiv (der ganze
> Bildbereich der oberenen Halbebene wird ausgenutzt) und
> injektiv (jeder Wert x wird auf ein eindeutiges f(x)
> abgebildet).
>  Ich habe mir gedacht, dass man die Surjektivität
> bestätigen kann, indem man Im(z) > 0 & Re(z) > 0 beweist.
>  i [mm]\bruch{1 + z}{1 - z}[/mm] = [mm]\bruch{i(x + iy) + i}{1 - (x + iy)}[/mm]
> = [mm]\bruch{ix - y^{2} + i}{(1 - x) - iy)}.[/mm]

[notok] [mm] $-y^2$ [/mm] ist falsch: sollte $-y$ sein.

>  Jetzt konjugiert
> erweitern (-> 3. Binom)
>  [mm]\bruch{(ix - \red{y^{2}} + i) (1 - x + iy)}{(1 - x)^{2} + y^{2})} = \bruch{-xy - y^{2} + xy^{2} - y)}{(1 - x)^{2} + y^{2})}+ i \bruch{-x^{2} - y^{3} + 1}{(1 - x)^{2} + y^{2})}.[/mm]
>  Hier
> komme ich nicht weiter..ich versteh' nicht wie jetzt der
> Real- und Imaginärteil > 0 sind...

Du musst nur zeigen, dass der Imaginärteil >0 ist. Dazu musst Du bedenken, dass [mm] $x^2+y^2<1$ [/mm] und $|x|,|y|< 1$ gilt.

>  
> Wie beweist man denn die Injektivität??

Z.B. wie in b)...

>  
> Zu b)
> Kann man die Umkehrfunktion berechnen, indem man f(z) =
> Bild = b setzt und auf z auflöst? Konkret wäre das:
>  b = [mm]\bruch{iz + i}{1 - z}[/mm] || * (1 - z)
>  b - bz = iz + i
>  z(i + b) = b - i
>  z = [mm]\bruch{b - i}{i + b}.[/mm] Stimmt das denn?

ja. und weil nach Teilaufgabe a) der Imaginärteil von $b$ > 0 ist, ist die Division durch $i+b$ auch immer möglich.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]