Moivre-Formel < komplexe Zahlen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 11:56 Do 22.05.2014 | Autor: | gr5959 |
Aufgabe | Verständnisproblem bei Lodders Darstellung der Moivre-Formel (https://matheraum.de/wissen/Moivre-Formel) |
Ich versuche, nach Lodders Anleitung (https://matheraum.de/wissen/Moivre-Formel) die Lösungen der Kubikwurzel aus minus acht zu finden. Ich gehe aus von z = ∛(-8)+ 0i. Wenn ich nun r nach der Formel [mm] √(x^2+yi^2) [/mm] berechne, also √((∛ minus [mm] 8)^2+(0i)^2)), [/mm] bekomme ich für r = ∛(-8) = -2
Lodder hat aber in seiner Formel zu Beginn als Faktor die nte Wurzel aus r. r müsste in seiner Rechnung also -8 sein. Da dieser Faktor bei der Frage nach den Lösungen von ∛(-8) aber -2 sein muss, um mittels de Moivre die richtigen Ergebnisse zu bekommen, muss meine Berechnung von r falsch sein. r muss, nach Lodders Formel, -8 sein. Also müsste meine Ausgangsformel z = ∛(-8)+ 0i falsch sein. Richtig müsste sie lauten z = -8 + 0i, damit für r sich -8 ergibt.
Doch meine Ausgangsformel z = ∛(-8)+ 0i gründet auf der Überlegung, dass [mm] z^3 [/mm] = -8 sein müsste. Das heisst, dass alle drei Lösungen nach Moivre -8 ergeben müssten (und tatsächlich ergeben), wenn man sie mit 3 potenziert.
Wo steckt hier mein Denkfehler? G.R.
|
|
|
|
Hallo,
erschdens: der User heißt Loddar!
zweidens:
> Verständnisproblem bei Lodders Darstellung der
> Moivre-Formel (https://matheraum.de/wissen/Moivre-Formel)
>
> Ich versuche, nach Lodders Anleitung
> (https://matheraum.de/wissen/Moivre-Formel) die Lösungen
> der Kubikwurzel aus minus acht zu finden. Ich gehe aus von
> z = ∛(-8)+ 0i. Wenn ich nun r nach der Formel
> [mm]√(x^2+yi^2)[/mm] berechne, also √((∛ minus [mm]8)^2+(0i)^2)),[/mm]
> bekomme ich für r = ∛(-8) = -2
> Lodder hat aber in seiner Formel zu Beginn als Faktor die
> nte Wurzel aus r. r müsste in seiner Rechnung also -8
> sein.
Nein. r ist der Betrag von z, also ist hier r=|-8|=8.
Gruß, Diophant
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:39 Fr 23.05.2014 | Autor: | gr5959 |
Pardon für den entstellenden Tippfehler! Und danke für den Hinweis auf den Betrag! G.R.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:23 Do 22.05.2014 | Autor: | fred97 |
> Verständnisproblem bei Lodders Darstellung der
> Moivre-Formel (https://matheraum.de/wissen/Moivre-Formel)
>
> Ich versuche, nach Lodders Anleitung
> (https://matheraum.de/wissen/Moivre-Formel) die Lösungen
> der Kubikwurzel aus minus acht zu finden. Ich gehe aus von
> z = ∛(-8)+ 0i. Wenn ich nun r nach der Formel
> [mm]√(x^2+yi^2)[/mm] berechne
Ergänzend zu Diophant: Deine "Formel" ist falsch. Ist $z=x+iy$ [mm] \in \IC [/mm] mit $x,y [mm] \in \IR$, [/mm] so ist
[mm] $|z|=\wurzel{x^2+y^2}$
[/mm]
FRED
, also √((∛ minus [mm]8)^2+(0i)^2)),[/mm]
> bekomme ich für r = ∛(-8) = -2
> Lodder hat aber in seiner Formel zu Beginn als Faktor die
> nte Wurzel aus r. r müsste in seiner Rechnung also -8
> sein. Da dieser Faktor bei der Frage nach den Lösungen von
> ∛(-8) aber -2 sein muss, um mittels de Moivre die
> richtigen Ergebnisse zu bekommen, muss meine Berechnung von
> r falsch sein. r muss, nach Lodders Formel, -8 sein. Also
> müsste meine Ausgangsformel z = ∛(-8)+ 0i falsch sein.
> Richtig müsste sie lauten z = -8 + 0i, damit für r sich
> -8 ergibt.
> Doch meine Ausgangsformel z = ∛(-8)+ 0i gründet auf der
> Überlegung, dass [mm]z^3[/mm] = -8 sein müsste. Das heisst, dass
> alle drei Lösungen nach Moivre -8 ergeben müssten (und
> tatsächlich ergeben), wenn man sie mit 3 potenziert.
> Wo steckt hier mein Denkfehler? G.R.
>
>
>
>
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:20 Do 22.05.2014 | Autor: | Herby |
Hallo,
ich verstehe dein Problem, denn der Artikel ist an der einen und anderen Stelle in Bezug auf z und [mm] z^n [/mm] nicht korrekt.
Ich werde ihn am Wochenende noch einmal überarbeiten.
So long
Herby
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:33 Fr 23.05.2014 | Autor: | gr5959 |
Danke! Ich werde zu den ersten Lesern der Neufassung gehören! G.R.
|
|
|
|