matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieMomente der Normalverteilung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Wahrscheinlichkeitstheorie" - Momente der Normalverteilung
Momente der Normalverteilung < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Momente der Normalverteilung: Herleitung
Status: (Frage) beantwortet Status 
Datum: 22:31 Di 05.05.2020
Autor: sancho1980

Aufgabe
Zeigen Sie, dass Satz 29.4 gilt. (Tipp Zeigen Sie mithilfe partieller Integration, dass [mm] E(Z^n) [/mm] = (n - 1) [mm] E(Z^{n-2}) [/mm] und verwenden Sie [mm] E(Z^0) [/mm] = E(1) = 1.)

Satz 29.4: Für die Momente einer standardnormalverteilten Zufallsvariablen Z gilt:

[mm] E(Z^n) [/mm] = [mm] \begin{cases} 0, & \mbox{falls } n \mbox{ ungerade} \\ 1 * 3 * 5 \cdots (n - 1) , & \mbox{falls } n \mbox{ gerade} \end{cases} [/mm]

Hallo,

es ist doch:

[mm] E(Z^n) [/mm] = [mm] \bruch{1}{2 \pi} \integral_{-\infty}^{\infty}{z^n e^{-\bruch{z^2}{2}} dz} [/mm]

Und:

[mm] E(Z^{n - 2}) [/mm] = [mm] \bruch{1}{2 \pi} \integral_{-\infty}^{\infty}{z^{n - 2} e^{-\bruch{z^2}{2}} dz} [/mm]

Jetzt kann man sich doch [mm] \bruch{1}{2 \pi} [/mm] wegdenken, und dann müsste ich doch mit partieller Integration von

[mm] \integral{z^n e^{-\bruch{z^2}{2}} dz} [/mm] = [mm] \integral{z^{n - 1} z e^{-\bruch{z^2}{2}} dz} [/mm]

bei

(n - 1) [mm] \integral{z^{n - 2} e^{-\bruch{z^2}{2}} dz} [/mm]

landen, richtig?

Aber wenn ich das partiell integriere, bekomme ich:

[mm] \integral{z^{n - 1} z e^{-\bruch{z^2}{2}} dz} [/mm] = [mm] -e^{-\bruch{z^2}{2}} z^{n - 1} [/mm] + (n - 1) [mm] \integral{z^{n - 2} e^{-\bruch{z^2}{2}} dz} [/mm]

Das ist doch offensichtlich nicht gleich; was soll ich denn gegen das [mm] -e^{-\bruch{z^2}{2}} z^{n - 1} [/mm] tun? Oder habe ich falsch integriert?

Danke & Gruß,

Martin

        
Bezug
Momente der Normalverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 07:48 Mi 06.05.2020
Autor: fred97


> Zeigen Sie, dass Satz 29.4 gilt. (Tipp Zeigen Sie mithilfe
> partieller Integration, dass [mm]E(Z^n)[/mm] = (n - 1) [mm]E(Z^{n-2})[/mm]
> und verwenden Sie [mm]E(Z^0)[/mm] = E(1) = 1.)
>  
> Satz 29.4: Für die Momente einer standardnormalverteilten
> Zufallsvariablen Z gilt:
>  
> [mm]E(Z^n)[/mm] = [mm]\begin{cases} 0, & \mbox{falls } n \mbox{ ungerade} \\ 1 * 3 * 5 \cdots (n - 1) , & \mbox{falls } n \mbox{ gerade} \end{cases}[/mm]
>  
> Hallo,
>  
> es ist doch:
>  
> [mm]E(Z^n)[/mm] = [mm]\bruch{1}{2 \pi} \integral_{-\infty}^{\infty}{z^n e^{-\bruch{z^2}{2}} dz}[/mm]
>  
> Und:
>  
> [mm]E(Z^{n - 2})[/mm] = [mm]\bruch{1}{2 \pi} \integral_{-\infty}^{\infty}{z^{n - 2} e^{-\bruch{z^2}{2}} dz}[/mm]
>  
> Jetzt kann man sich doch [mm]\bruch{1}{2 \pi}[/mm] wegdenken, und
> dann müsste ich doch mit partieller Integration von
>  
> [mm]\integral{z^n e^{-\bruch{z^2}{2}} dz}[/mm] = [mm]\integral{z^{n - 1} z e^{-\bruch{z^2}{2}} dz}[/mm]
>  
> bei
>  
> (n - 1) [mm]\integral{z^{n - 2} e^{-\bruch{z^2}{2}} dz}[/mm]
>  
> landen, richtig?

Nein. Du schreibst [mm] \int, [/mm] Du integrierst also unbestimmt. Du landest richtig, und das sollst Du auch zeigen, wenn Du [mm] \int_{- \infty}^{\infty} [/mm] schribst (siehe unten).


>  
> Aber wenn ich das partiell integriere, bekomme ich:
>  
> [mm]\integral{z^{n - 1} z e^{-\bruch{z^2}{2}} dz}[/mm] =
> [mm]-e^{-\bruch{z^2}{2}} z^{n - 1}[/mm] + (n - 1) [mm]\integral{z^{n - 2} e^{-\bruch{z^2}{2}} dz}[/mm]
>  
> Das ist doch offensichtlich nicht gleich; was soll ich denn
> gegen das [mm]-e^{-\bruch{z^2}{2}} z^{n - 1}[/mm] tun? Oder habe ich
> falsch integriert?

Du hast richtig unbestimmt integriert. Zum Ziel kommst Du so:


[mm]\integral_{- \infty}^{\infty}{z^{n - 1} z e^{-\bruch{z^2}{2}} dz} = -e^{-\bruch{z^2}{2}} z^{n - 1}|_{- \infty}^{\infty} + (n - 1) \integral_{- \infty}^{\infty}{z^{n - 2} e^{-\bruch{z^2}{2}} dz}[/mm]

Es ist

    [mm] $e^{-\bruch{z^2}{2}} z^{n - 1}|_{- \infty}^{\infty}=0$ [/mm]

>  
> Danke & Gruß,
>  
> Martin


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]