matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenmathematische StatistikMomenterzeugende Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "mathematische Statistik" - Momenterzeugende Funktion
Momenterzeugende Funktion < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Momenterzeugende Funktion: Erwarungswert Gleichverteilung
Status: (Frage) beantwortet Status 
Datum: 14:45 Fr 03.06.2016
Autor: Hejo

Wenn ich die Momenterzeugende Funktion ableite erhalte ich

[mm] \bruch{dm_x(t)}{dt}=\bruch{1}{b-a}(\bruch{be^{tb}-ae^{ta}}{t}-\bruch{e^{tb}-e^{ta}}{t^2}) [/mm]

hier wollte ich jetzt mit der Regel von de l’Hospital ansetzen, allerdings ist [mm] \limes_{t\rightarrow0}(be^{tb}-ae^{ta})=b-a\not=0, [/mm] für [mm] b\not=a [/mm]

Kann mir jemand weiterhelfen?

        
Bezug
Momenterzeugende Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 14:59 Fr 03.06.2016
Autor: Gonozal_IX

Hiho,

du hast auch noch einen zweiten Summanden. Bringe das auf den Hauptnenner und du hast von ganz allein die Form [mm] $\frac{0}{0}$ [/mm]

Unabhängig davon: wenn du jetzt sowieso Grenzwerte betrachten musst, warum berechnest du nicht gleich die Ableitung von [mm] $m_X$ [/mm] an der Stelle Null über die Definition:

[mm] $\lim_{t\to 0} \frac{m_X(t) - m_x(0)}{t}$ [/mm]

Gruß,
Gono

Bezug
                
Bezug
Momenterzeugende Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:09 Fr 03.06.2016
Autor: Hejo

Thanks.

> Unabhängig davon: wenn du jetzt sowieso Grenzwerte
> betrachten musst, warum berechnest du nicht gleich die
> Ableitung von [mm]m_X[/mm] an der Stelle Null über die Definition:
>  
> [mm]\lim_{t\to 0} \frac{m_X(t) - m_x(0)}{t}[/mm]

hier hast du mich wieder verloren^^


Bezug
                        
Bezug
Momenterzeugende Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:14 Fr 03.06.2016
Autor: Gonozal_IX

Hiho,

na wie ist denn die Ableitung an einer Stelle definiert?
Das was du faktisch tust, ist ja nicht die Ableitung an der Stelle t=0 bestimmen, sondern den Wert der stetigen Fortsetzung der Ableitung für [mm] $t\not=0$. [/mm]

Das stimmt dann aber nur für stetig differenzierbare Funktionen überein.

Gruß,
Gono

Bezug
                                
Bezug
Momenterzeugende Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:35 Fr 03.06.2016
Autor: Hejo

[mm] \lim_{t\to 0} \frac{m_X(t) - m_x(0)}{t}=\lim_{t\to 0}\bruch{\bruch{e^{tb}-e^{ta}}{t(b-a)}-1}{t} [/mm]

Das meinst du soch oder? Aber hier ist der Ausdruck im Zähler auch ungleich Null...

Bezug
                                        
Bezug
Momenterzeugende Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:37 Fr 03.06.2016
Autor: Hejo

Ach Quatsch. Der wird genau Null. Ok ich  glaub ich habs

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]