matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieMomenterzeugende Funktion
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integrationstheorie" - Momenterzeugende Funktion
Momenterzeugende Funktion < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Momenterzeugende Funktion: Tipp
Status: (Frage) überfällig Status 
Datum: 12:44 Mo 12.11.2012
Autor: dimi727

Aufgabe
Aufgabe : (Momenterzeugende Funktion)

Sei [mm] \mu [/mm] ein Maß auf [mm] (\IR; B(\IR)). [/mm] Definition der m.e.F. : M(t) = [mm] \integral_{}^{}{e^{tx} \mu (dx)} \in [/mm] [0, [mm] \infty] [/mm] fuer t [mm] \in \IR. [/mm] Nimm an, dass I = {t [mm] \in \IR: [/mm] M(t) < [mm] \infty [/mm] } nicht leer ist. Benutze Aufgabe 3(ii) um zu zeigen, dass log(M(t)) convex ist in I. Hebe den Gebrauch von Fubinis Theorem hervor.

3(ii) :

Hier haben wir gezeigt, dass M beliebig oft differenzierbar ist im Inneren von I und [mm] M^{k} [/mm] = [mm] \integral_{}^{}{x^k e^{tx} \mu (dx)} [/mm] gilt.

Hi Leute,

ich brauche zur oberen Aufgabe [mm] Tipps\Hilfe. [/mm]

Kann ich hier logM einfach 2 mal differenzieren und zeigen,dass die 2Ableitung groesser Null ist?

(log(M))'' = [mm] (\bruch{M'}{M})'= (\bruch{\integral_{}^{}{xe^{tx} \mu (dx)}}{\integral_{}^{}{e^{tx} \mu (dx)}})' [/mm] =  [mm] \bruch{\integral_{}^{}{x^2e^{tx} \mu (dx)}\integral_{}^{}{e^{tx} \mu (dx)}-\integral_{}^{}{xe^{tx} \mu (dx)}\integral_{}^{}{xe^{tx} \mu (dx)}}{(\integral_{}^{}{e^{tx} \mu (dx)})^2} [/mm]

Und weiter? Ich muss ja irgendwo Fubini anwenden und Fubini sagt ja,dass ich innerhalb eines Integrals die I Integrationsreihenfolge aendern kann. Wie hilft mir das weiter?

        
Bezug
Momenterzeugende Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:31 Di 13.11.2012
Autor: dimi727

Hallo? Keiner Lust auf die Aufgabe?

Ich habe ein bisschen weitergeschafft, habe die Variablen umbenannt und Fubini angewandt :

$ [mm] \bruch{\integral_{}^{}{x^2e^{tx} \mu (dx)}\integral_{}^{}{e^{ty} \mu (dy)}-\integral_{}^{}{we^{tw} \mu (dw)}\integral_{}^{}{ue^{tu} \mu (du)}}{(\integral_{}^{}{e^{tx} \mu (dx)})^2} [/mm] $ =
(hier dann Fubini) =
$ [mm] \bruch{\integral\integral_{}^{}{yx^2e^{t(x+y)} \mu (dxdy)}-\integral\integral_{}^{}{wue^{t(w+u)} \mu (dwdu)}}{(\integral_{}^{}{e^{tx} \mu (dx)})^2} [/mm] $

Wie könnte ich jetzt zeigen,dass der Zähler größer 0 ist?

Bezug
        
Bezug
Momenterzeugende Funktion: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Do 15.11.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]