matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenMonotonie
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Monotonie
Monotonie < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Monotonie: Lösung bekannt Schritte unklar
Status: (Frage) beantwortet Status 
Datum: 11:44 Do 07.02.2008
Autor: NightmareVirus

Hallo,

Sei
[mm] a_{n} [/mm] := (1 + [mm] \bruch{1}{n})^{n} [/mm]
Nun soll gezeigt werden, dass an streng monoton steigend ist.

Dazu werden in meinem Skript folgende Schritte gemacht:

Für n [mm] \in \IN [/mm] gilt
[mm] a_{n} [/mm] = (1 + [mm] \bruch{1}{n})^{n} [/mm]

= 1 * [mm] \produkt_{j=1}^{n}(1 [/mm] + [mm] \bruch{1}{n}) [/mm]
(der schritt ist ja trivial)

mit der "Ungleichung zwischen geometrischem und arithmetischem Mittel" folgt:

< ( [mm] \bruch{1}{n+1} [/mm] ( 1+ [mm] \summe_{j=1}^{n}(1 [/mm] + [mm] \bruch{1}{n}) [/mm] ) [mm] )^{n+1} [/mm]
(diesen schritt versteh ich überhaupt nicht) siehe unten: (*)

= [mm] (\bruch{n+2}{n+1})^{n+1} [/mm]
(diesen schritt versteh ich auch nicht) siehe unten: (**)

= (1 + [mm] \bruch{1}{n+1})^{n+1} [/mm]
(verstanden)

=  [mm] a_{n+1} [/mm]
-----------------------------------

Also jetzt nochmal zu den Punkten (*) und (**) wo ich mein Probleme hab.

Wenn ich bei (*) die AGM-Ungleiochung anwende erhalte ich doch:

1 * [mm] \produkt_{j=1}^{n}(1 [/mm] + [mm] \bruch{1}{n}) [/mm]

[mm] \le [/mm] 1 *   ( [mm] \bruch{1}{n} \summe_{j=1}^{n}(1 [/mm] + [mm] \bruch{1}{n}))^{n} [/mm]

was meiner meinung nach aber keine große ähnlichkeit zu

< ( [mm] \bruch{1}{n+1} [/mm] ( 1+ [mm] \summe_{j=1}^{n}(1 [/mm] + [mm] \bruch{1}{n}) [/mm] ) [mm] )^{n+1} [/mm]

hat

Und bei Schritt (**) hab ich auch keinen blasse Schimmer... ich hoffe mir kann jmd das erklären.


        
Bezug
Monotonie: Antwort
Status: (Antwort) fertig Status 
Datum: 12:39 Do 07.02.2008
Autor: Somebody


> Hallo,
>  
> Sei
>  [mm]a_{n} := (1 + \bruch{1}{n})^{n}[/mm]
>  Nun soll gezeigt werden, dass an streng monoton steigend
> ist.
>  
> Dazu werden in meinem Skript folgende Schritte gemacht:
>  
> Für [mm]n \in \IN[/mm] gilt
>  [mm]a_{n} = (1 + \bruch{1}{n})^{n} = 1 * \produkt_{j=1}^{n}(1 + \bruch{1}{n})[/mm]
>  (der schritt ist ja trivial)
>  
> mit der "Ungleichung zwischen geometrischem und
> arithmetischem Mittel" folgt:
>  
> [mm]( \bruch{1}{n+1} ( 1+ \summe_{j=1}^{n}(1 + \bruch{1}{n})) )^{n+1}[/mm]
>  (diesen schritt versteh ich überhaupt nicht) siehe unten:
> (*)
>  
> = [mm](\bruch{n+2}{n+1})^{n+1}[/mm]
>  (diesen schritt versteh ich auch nicht) siehe unten: (**)
>  
> [mm]= (1 + \bruch{1}{n+1})^{n+1}[/mm]
>  (verstanden)
>  
> =  [mm]a_{n+1}[/mm]
>  -----------------------------------
>  
> Also jetzt nochmal zu den Punkten (*) und (**) wo ich mein
> Probleme hab.
>  
> Wenn ich bei (*) die AGM-Ungleiochung anwende erhalte ich
> doch:
>  
> [mm]1 * \produkt_{j=1}^{n}(1 + \bruch{1}{n})\le 1 * ( \bruch{1}{n} \summe_{j=1}^{n}(1 + \bruch{1}{n}))^{n}[/mm]
>  
> was meiner meinung nach aber keine große ähnlichkeit zu
>  
> [mm]( \bruch{1}{n+1} (\red{1}+ \summe_{j=1}^{n}(1 + \bruch{1}{n})))^{n+1}[/mm]
>  
> hat

Wegen dem schlauen Dazugeben des trivialen Faktors $1$ hat man eben $n+1$ Faktoren beim geometrischen Mittel und $n+1$ Summanden beim arithmetischen Mittel (deshalb ja der Summand [mm] $\red{1}$ [/mm] vor [mm] $\sum_{j=1}^\infty \left(1+\frac{1}{n}\right)$: [/mm] dann kommts gerade richtig.

>  
> Und bei Schritt (**) hab ich auch keinen blasse Schimmer...
> ich hoffe mir kann jmd das erklären.

[mm]\begin{array}{lcll} \left(\frac{1}{n+1}\left(1+ \summe_{j=1}^n\left(1 + \frac{1}{n}\right)\right)\right)^{n+1} &=& \left(\frac{1}{n+1}\left(1+\summe_{j=1}^n \frac{n+1}{n}\right)\right)^{n+1} &\text{Sumanden gleichnamig gemacht}\\ &=& \left(\frac{1}{n+1}\left(1+n\cdot\frac{n+1}{n}\right)\right)^{n+1} &\text{Summanden sind von $j$ unabhängig}\\ &=& \left(\frac{n+2}{n+1}\right)^{n+1} \end{array}[/mm]


>  
> = [mm](\bruch{n+2}{n+1})^{n+1}[/mm]

Ok, das passt...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]