matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisMonotonie auf Teilabschnitten
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - Monotonie auf Teilabschnitten
Monotonie auf Teilabschnitten < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Monotonie auf Teilabschnitten: Frage
Status: (Frage) beantwortet Status 
Datum: 11:19 Mo 29.11.2004
Autor: Tintenfisch

ICh habe diese Frage in keinem anderen Forum gestellt.

Hi!
Wir müssen für f(x)= 1-  [mm] \bruch{2}{(x+1)} [/mm] die Monotonie auf Teilintervallen untersuchen.

Als Teilintervalle habe ich -  [mm] \infty [/mm] ; 1[ und ]1;  [mm] \infty [/mm] .
streng monoton wachsend würde ja bedeuten, dass  [mm] x_{1} \le x_{2} [/mm] ist und dann f(x1)  [mm] \le [/mm] f(x2).
Also habe ich :
1- [mm] \bruch{2}{(x_{1}+1)} \le [/mm]  1- [mm] \bruch{2}{(x_{2}+1)} [/mm]
Wenn ich das auflöse,bekomme ich
[mm] (x_{2}+1) \ge x_{1} [/mm] +1

ABer, sagt mir das was aus?
ICh habe irgendwie allein schon die Vorgangsweise hier nicht wirklich verstanden.
Logisch für mich war x1 und x2 einzusetzen, und dann zu zeigen, wie x1 und x2 dann zueineander stehen.
Aber, wie muss das gemacht werden?
Über jede noch so kleinste HIlfe wäre ich dankbar, denn es ist nicht nur für die Hausuafgabe, sondern allgemein wichtig.

        
Bezug
Monotonie auf Teilabschnitten: Antwort + Erklärung
Status: (Antwort) fertig Status 
Datum: 12:49 Mo 29.11.2004
Autor: e.kandrai

Zuerst mal: du hast deine Betrachtungsintervalle falsch gewählt. Die kritische Stelle im Nenner ist [mm]x_0=-1[/mm], und somit musst du die Teilintervalle [mm] ]-\infty ; -1[ [/mm]  und  [mm] ]-1 ; \infty[ [/mm] betrachten.

So, nun zur Kurve und der Monotonie. Ich würde auch sagen, dass die Kurve in beiden Teilintervallen streng monoton steigt; hier der Graph (dank Maple):
[Dateianhang nicht öffentlich]

Wieso diese Vorgehensweise? Ich hoffe, dass klar ist, warum man bei "streng mon. steigend" sagt: [mm]x_1
Hier gehen wir für den rechnerischen Nachweis aus von [mm]f(x_1)muss.

Das muss man natürlich auch für beide Teilintervalle getrennt durchrechnen. Bin zu faul, das nochmal ins Formelsystem zu übertragen, deswegen füg ich einfach den Scan ein ;-)  -  Erläuterungen zu einigen Rechenschritten unter dem Scan.

[Dateianhang nicht öffentlich]

Erstmal muss klar sein, dass sich ein Ungleichungszeichen umkehrt, wenn man mit ner negativen Zahl multipliziert, oder durch eine dividiert.
Außerdem: wenn man auf beiden Seiten den Kehrwert bilden will, dann muss man erst überlegen, welches Vorzeichen jede Seite hat; wenn beide dasselbe Vorzeichen haben (beide positiv, oder beide negativ), dann dreht sich das Ungleichungszeichen nach dem Kehrwert-Bilden um. Haben die Seiten unterschiedliches Vorzeichen, dann bleibt das Ungl.zeichen nach dem Kehrwert-Bilden erhalten (überleg dir diese Zusammenhänge an einfachen Beispielen, wie  [mm]5<7[/mm]  ,  [mm]-3<-1[/mm]  ,  [mm]-5<3[/mm]  oder  [mm]2>-4[/mm]  -  bilde einfach jeweils den Kehrwert, und überleg, in welchem Fall das Ungl.zeichen umgedreht werden muss).

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Anhang Nr. 2 (Typ: jpg) [nicht öffentlich]
Bezug
                
Bezug
Monotonie auf Teilabschnitten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:03 Di 30.11.2004
Autor: Tintenfisch

Hi!
Genauso habe ich das mittlerweile auch gemacht. Das ist also alles?
Eigentlich habe ich ja zweimal das gleiche gerechnet, ich mache mir nur im Kopf klar, dass das was unterschiedliches heißt, richtig?
Gut, dann sollte das wohl kein Problme mehr sein, denn soweit hatte ich das verstanden, wusste nur nicht, dass das alles ist.

Nochmals großen Dank!


ICh habe diese Frage in keinem anderen Forum gestellt.

Hi!
Wir müssen für f(x)= 1-  [mm] \bruch{2}{(x+1)} [/mm] die Monotonie auf Teilintervallen untersuchen.

Als Teilintervalle habe ich -  [mm] \infty [/mm] ; 1[ und ]1;  [mm] \infty [/mm] .
streng monoton wachsend würde ja bedeuten, dass  [mm] x_{1} \le x_{2} [/mm] ist und dann f(x1)  [mm] \le [/mm] f(x2).
Also habe ich :
1- [mm] \bruch{2}{(x_{1}+1)} \le [/mm]  1- [mm] \bruch{2}{(x_{2}+1)} [/mm]
Wenn ich das auflöse,bekomme ich
[mm] (x_{2}+1) \ge x_{1} [/mm] +1

ABer, sagt mir das was aus?
ICh habe irgendwie allein schon die Vorgangsweise hier nicht wirklich verstanden.
Logisch für mich war x1 und x2 einzusetzen, und dann zu zeigen, wie x1 und x2 dann zueineander stehen.
Aber, wie muss das gemacht werden?
Über jede noch so kleinste HIlfe wäre ich dankbar, denn es ist nicht nur für die Hausuafgabe, sondern allgemein wichtig.

Bezug
                        
Bezug
Monotonie auf Teilabschnitten: Das war alles
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:49 Di 30.11.2004
Autor: e.kandrai

Ja, das war schon alles.
Ist schon irgendwie zweimal dasselbe, aber es hätte ja auch sein können, dass die Funktion in einem Teilintervall steigt, und im anderen fällt (wie z.B. bei der [mm]\bruch{1}{x^2}[/mm]).


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]