matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungMonotoniesatz
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Differenzialrechnung" - Monotoniesatz
Monotoniesatz < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Monotoniesatz: Tipp
Status: (Frage) beantwortet Status 
Datum: 12:59 Fr 17.04.2009
Autor: SyNaPsE

Aufgabe
Diskutieren Sie die Funktionen [mm] f(x)=x^4 [/mm] und [mm] g(x)=x^5 [/mm] ( auch im Hinblick auf Monotoniesatz ).

Hallihallo.
Oben genannte Aufgabe macht mir iwie probleme. 1. Keine Ahnung was das mit dem Monotoniesatz auf sich hat. 2. Ich hab die 3 Ableitungen gebildet und die funktion [mm] f(x)=x^4 [/mm] disskutiert.

Ableitungen:

1. [mm] f'(x)=4x^3 [/mm]
2. [mm] f''(x)=12x^2 [/mm]
3. f'''(x)=24x

So, wie ueblich hab ich die Extremwerte ausgerechnet.  Xe1-3=0
Wendepunkte: Xw1-2=0
Nullstellen Xn1-4=0

Aber da komm ich in konflikt mit den hinreichenden Bedingungen fuer die jeweiligen Punkte, weil alles "0" ergibt. Und ich weiß auch nicht was mit dem Monotoniesatz ist.

Wäre froh ueber ein paar Tipps.
Danke

        
Bezug
Monotoniesatz: Antwort
Status: (Antwort) fertig Status 
Datum: 13:37 Fr 17.04.2009
Autor: Steffi21

Hallo,

deine Ableitungen sind korrekt, ebenso die Etremstelle x=0, betrachte jetzt das Vorzeichenwechselkriterium, untersuche [mm] f'(x)=4*x^{3} [/mm] für x<0 und x>0,
das hinreichende Kriterium für einen Wendepunkt:
- die Funktion ist in der Umgebung der Stelle des Wendepunktes dreimal differenzierbar
- [mm] f''(x_w)=0 [/mm]
- [mm] f'''(x_w)\not=0 [/mm]
jetzt sollte die Entscheidung zum Wendepunkt dir gelingen,
du kannst auch untersuchen, ob [mm] f''(x_w) [/mm] an der Stelle [mm] x_w [/mm] das Vorzeichen wechselt,
der Monotoniesatz besagt, ist eine Funktion im Intervall differenzierbar, so gilt:
(1) wenn [mm] f'(x)\ge0 [/mm] für alle x im Intervall, dann ist die Funktion monoton wachsend
(2) wenn [mm] f'(x)\le0 [/mm] für alle x im Intervall, dann ist die Funktion monoton steigend
bei der strengen Monotonie entfällt das Gleichheitszeichen,

Steffi


Bezug
                
Bezug
Monotoniesatz: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:43 Fr 17.04.2009
Autor: SyNaPsE

Ich denke nun muesste es gehen.
Vielen vielen Dank =)

Christoph

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]