matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenMonotonieverhalten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Funktionen" - Monotonieverhalten
Monotonieverhalten < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Monotonieverhalten: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 13:29 Sa 23.04.2011
Autor: Roffel

Aufgabe
Zeigen Sie, dass die Funktion
f(x)= [mm] x*ln(1+\bruch{2}{x}) [/mm]   für x > 0
Streng monoton wachsend ist.

Hi
Also normal würde ich das mit f'(x) > 0 machen...
da kommt dann bei mir raus

f'(x)= [mm] ln(1+\bruch{2}{x}) [/mm] - [mm] \bruch{2}{x+2} [/mm]
und jetzt muss ich ja irgendwie zeigen das f'(x) größer 0 ist, wenn x>0
wie mach ich das denn?
ich hät jetzt gesagt:
[mm] \limes_{x\rightarrow\infty} f'(x)=ln(1+\bruch{2}{x}) [/mm] - [mm] \bruch{2}{x+2}=0 [/mm]
also jetzt weiß man ja das f'(x) sich 0 annähert.. aber das sagt mir ja nicht unbedingt das f(x) streng monoton wachsend ist oder etwa doch???

in ein anderen Lösung berechnen die noch f''(x)
da würde dann hier bei mir
f''(x)= [mm] \bruch{-4}{(x+2)^2*x} [/mm] rauskommen
und da sieht man dann das für x>0 f''(x) kleiner 0 immer ist. ok. und wenn f''(x) < 0 ist dann muss ja f'(x) streng monoton fallend sein... aber ich versteh noch nicht den Zusammenhang, dass wenn man weiß das f'(x) streng monoton fallend ist , das dann automatisch f(x) streng monton wachsend sein soll...kann mir das jemand erklären ? und kann man oder muss man es dann immer noch mit der 2ten ableitung machen, weil eigentlich muss dann ja nur zeigen dachte ich das f'(x) > 0 ist.. oder kann man das hier bei dieser aufgabe halt nicht zeigen.. häää :)

Danke

Gruß


        
Bezug
Monotonieverhalten: Antwort
Status: (Antwort) fertig Status 
Datum: 13:46 Sa 23.04.2011
Autor: kamaleonti

Moin,
> Zeigen Sie, dass die Funktion
> f(x)= [mm]x*ln(1+\bruch{2}{x})[/mm]   für x > 0
>  Streng monoton wachsend ist.
>  Hi
>  Also normal würde ich das mit f'(x) > 0 machen...

>  da kommt dann bei mir raus
>  
> f'(x)= [mm]ln(1+\bruch{2}{x})[/mm] - [mm]\bruch{2}{x+2}[/mm]
> und jetzt muss ich ja irgendwie zeigen das f'(x) größer 0
> ist, wenn x>0
>  wie mach ich das denn?
>  ich hät jetzt gesagt:
> [mm]\limes_{x\rightarrow\infty} f'(x)=\red{\lim_{x\to\infty}}ln(1+\bruch{2}{x})[/mm] -
> [mm]\bruch{2}{x+2}=0[/mm]
>  also jetzt weiß man ja das f'(x) sich 0 annähert.. aber
> das sagt mir ja nicht unbedingt das f(x) streng monoton
> wachsend ist oder etwa doch???
>  
> in ein anderen Lösung berechnen die noch f''(x)
>  da würde dann hier bei mir
>  f''(x)= [mm]\bruch{-4}{(x+2)^2*x}[/mm] rauskommen
>  und da sieht man dann das für x>0 f''(x) kleiner 0 immer
> ist. ok. und wenn f''(x) < 0 ist dann muss ja f'(x) streng
> monoton fallend sein...

Da ist die Situation doch ganz gut! ;-)
f'(x) ist streng monoton fallend und [mm] \lim_{x\to\infty}f'(x)=0. [/mm]
Daraus folgt ganz leicht f'(x)>0.
Sei andernfalls [mm] x_0>0 [/mm] mit [mm] f'(x_0)\leq0. [/mm] Dann gibt es [mm] x_1>x_0 [/mm] mit [mm] f'(x)\leq f'(x_1)<0 [/mm] für alle [mm] x\geq x_1 [/mm] wegen f' streng monoton fallend. Widerspruch zu [mm] \lim_{x\to\infty}f'(x)=0 [/mm]

> aber ich versteh noch nicht den
> Zusammenhang, dass wenn man weiß das f'(x) streng monoton
> fallend ist , das dann automatisch f(x) streng monton
> wachsend sein soll...kann mir das jemand erklären ? und
> kann man oder muss man es dann immer noch mit der 2ten
> ableitung machen, weil eigentlich muss dann ja nur zeigen
> dachte ich das f'(x) > 0 ist.. oder kann man das hier bei
> dieser aufgabe halt nicht zeigen.. häää :)
>  
> Danke
>  
> Gruß
>    

LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]