Münzen < Stochastik < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Hi könnt ihr mir bitte bei folgender Fragestellung helfen:
Unter 1 000 000 Münzen befindet sich eine, die auf beiden Seiten Edelweiß zeigt, alle übrigen sind normal. Eine dieser Münzen wird zufällig ausgewählt und 20 mal geworfen. Dabei erscheint 20 mal Edelweiß. Wie groß ist die Wahrscheinlichkeit, dass diese Münze normal ist?
Danke euch |
Ich weiß nicht wirklich wie ich da anfangen soll und bin für jeden Rat dankbar weil einfach anzunehmen
$P(X) = [mm] \bruch{999999}{1000000}$
[/mm]
ist doch falsch oder?
mfg
|
|
|
|
> Hi könnt ihr mir bitte bei folgender Fragestellung
> helfen:
>
> Unter 1 000 000 Münzen befindet sich eine, die auf beiden
> Seiten Edelweiß zeigt, alle übrigen sind normal. Eine
> dieser Münzen wird zufällig ausgewählt und 20 mal
> geworfen. Dabei erscheint 20 mal Edelweiß. Wie groß ist
> die Wahrscheinlichkeit, dass diese Münze normal ist?
>
> Danke euch
> Ich weiß nicht wirklich wie ich da anfangen soll und bin
> für jeden Rat dankbar weil einfach anzunehmen
>
> [mm]P(X) = \bruch{999999}{1000000}[/mm]
>
> ist doch falsch oder?
>
> mfg
Hallo Steffen,
was für eine seltsame Aufgabe (eher für Ober-
schlaue oder eher für Halbschlaue ?).
Was heißt denn hier "diese Münze" ? Doch wohl
diejenige, die nur Edelweiß gezeigt hat ! Und zwar
nach meiner simplen Sichtweise mit 100% -iger
Wahrscheinlichkeit ...
Die Wahrscheinlichkeit, dass diese Münze zu
den stinknormalen gehört, ist also gleich Null.
Sollte sich der Aufgabensteller etwas anderes
vorgestellt haben, dann hat er die Aufgabe
offensichtlich falsch formuliert !
LG , Al-Chw.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:48 So 14.04.2013 | Autor: | Sax |
Hi,
österreichische 2 ct-Münzen zeigen auf einer Seite Edelweiß.
Die Aufgabe ist mit Hilfe der Bayes'schen Umkehrformel zu lösen.
Gruß Sax.
|
|
|
|
|
> Hi,
>
> österreichische 2 ct-Münzen zeigen auf einer Seite
> Edelweiß.
>
> Die Aufgabe ist mit Hilfe der Bayes'schen Umkehrformel zu
> lösen.
>
> Gruß Sax.
Ach so. Und zirkulieren in Österreich keine 2-ct-Münzen
aus anderen Euro-Ländern, welche überhaupt kein
Edelweiß tragen ??
Ich meine, es fehlte die Angabe, dass es sich bei allen
betrachteten Münzen um 2-Cent Münzen von Österreich
handelt, vielleicht aus einer frisch von der Prägeanstalt
gelieferten Palette mit diesen Münzen.
Vielleicht sollte ich ja doch wieder mal nach Österreich,
um meine Bildungslücken zu stopfen ...
Das Motiv der Münze sieht jedenfalls super aus !
LG , Al-Chw.
|
|
|
|
|
Hallo,
wie Sax schon geschrieben hat, kannst du hier mit bedingten Wahrscheinlichkeiten rechnen. Bezeichnet [mm] E_2 [/mm] das Ereignis, dass die Münze mit zwei Seiten Edelweiß gezogen wird und [mm] E_1 [/mm] mit einer Seite Edelweiß.
Bezeichne K das Edelweiß beim Münzwurf geworfen wird und Z das die andere Seite geworfen wird.
Dann weißt du:
Wahrscheinlichkeiten, die Münze mit zweimal/einmal Edelweiß zu ziehen:
[mm] $P(E_1) [/mm] = 999999/1000000$
[mm] $P(E_2) [/mm] = 1/1000000$
Die Münze mit nur einem Edelweiß hat gleiche Wahrscheinlichkeiten für Edelweiß und NICHT Edelweiß:
[mm] $P(K|E_1) [/mm] = 1/2$
[mm] $P(Z|E_1) [/mm] = 1/2$
Die Münze mit zwei Edelweiß hat beim Münzwurf immer "Edelweiß" als Ergebnis:
[mm] $P(K|E_2) [/mm] = 1$
[mm] $P(Z|E_2) [/mm] = 0$.
Wie lauten nun die Wahrscheinlichkeiten, dass man mit diesen Münzen 20-mal Edelweiß bei 20 Würfen wirft? (Rechne mit der Binomialverteilung!)
[mm] $P(20E|E_1) [/mm] = ...$
[mm] $P(20E|E_2) [/mm] = ...$
Du suchst die Wahrscheinlichkeit [mm] P(E_1|20E) [/mm] dafür, dass die Münze normal ist, wenn 20-mal Edelweiß geworfen wurde. Nach dem Satz von Bayes gilt:
[mm] $P(E_1|20E) [/mm] = [mm] \frac{P(E_1)\cdot P(20E|E_1)}{P(E_1)\cdot P(20E|E_1)+ P(E_2)\cdot P(20E|E_2)}$
[/mm]
All diese Werte kannst du nun ausrechnen.
Viele Grüße,
Stefan
|
|
|
|
|
Hey, danke für deine Antwort
Habe ich das so richtige gerechnet:
[mm]P(20E|E_1) = 1/1048576[/mm]
[mm]P(20E|E_2) = 1[/mm]
Falls ja danke dir bzw bekomme als Lösung 0,48 heraus (falls du es auch durchgerechnet hast
mfg
>
> Viele Grüße,
> Stefan
|
|
|
|
|
Hallo,
> Hey, danke für deine Antwort
>
> Habe ich das so richtige gerechnet:
>
> [mm]P(20E|E_1) = 1/1048576[/mm]
> [mm]P(20E|E_2) = 1[/mm]
>
>
> Falls ja danke dir bzw bekomme als Lösung 0,48 heraus
> (falls du es auch durchgerechnet hast
Ja, darauf komme ich auch (bzw. genauer: 0.488 und damit korrekt gerundet 0.49)
Viele Grüße,
Stefan
|
|
|
|