Multilinearformen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei [mm]1 \le p \le k=dim(V) [/mm] und [mm] f:V^p\rightarrow\IR[/mm] multilinear und alternierend. Für eine Basis [mm] \{e_{1},....,e_{k}\} [/mm] von V sei [mm]v_{j}= \summe_{i=1}^{k}a_{ji}e_{i} \in V \quad 1 \le j \le p
\Rightarrow f(v_{1},...,v_{p})=\summe_{1\le i_{1}\le i_{2} \le...\le i_{p}\le k} det \pmat{ a_{1i_{1}} & ... & a_{pi_{1}} \\ a_{1i_{p}} & ... & a_{pi_{p}} }f(e_{i_{1}},...,e_{i_{p}} [/mm]
Beweis:
[mm]f(v_{1},...,v_{p})=\summe_{i_{1}=1}^{k}......\summe_{i_{p}=1}^{k}a_{1i_{1}}*....*a_{pi_{p}}f(e_{i_{1}},...,e_{i_{p}})
= \summe_{1\le i_{1}\le i_{2} \le...\le i_{p}\le k}[\summe_{\pi \in P_{p}}a_{1i_{\pi(1)}}*....*a_{pi_{\pi(p)}}f(e_{i_{\pi(1)}},...,e_{i_{\pi(p)}})] [/mm]
wobei [mm]P_{p}[/mm]: Permutationen von {1,...,p}.
Ferner ist [mm]f(e_{i_{\pi(1)}},...,e_{i_{\pi(p)}})=sgn(\pi)f(e_{i_{1}},...,e_{i_{p}}) [/mm]. Nach Determinantenformel(Leibnitz) folgt dann die Behauptung! [mm]\Box[/mm] |
Hallo zusammen!
Wir hatten obiges Lemma in der Vorlesung und schon da hab ich es nicht verstanden. Deshalb hab ich mal versucht den Beweis (und damit das Lemma) für p=k=2 nachzuvollziehen:
Zunächst Teil 1: [mm]f(v_{1},...,v_{p})=\summe_{i_{1}=1}^{k}......\summe_{i_{p}=1}^{k}a_{1i_{1}}*....*a_{pi_{p}}f(e_{i_{1}},...,e_{i_{p}}) [/mm]
Für eine Basis [mm] \{e_{1},e_{2}\} [/mm] von V sei [mm]v_{j}= \summe_{i=1}^{2}a_{ji}e_{i} \in V \quad 1 \le j \le 2. [/mm]
Ferner: [mm] P_{2}={(1)(2),(12)}[/mm]
Dann gilt wegen der Multilinearität von f:
[mm]f(v_{1},v_{2})=a_{11}a_{22}f(e_{1},e_{2})+a_{12}a_{21}f(e_{2},e_{1})+a_{11}a_{21}f(e_{1},e_{1})+a_{12}a_{22}f(e_{2},e_{2})[/mm]
Andererseits ergibt die Summe:
[mm]\summe_{i_{1}=1}^{2}\summe_{i_{2}=1}^{2}a_{1i_{1}}*a_{2i_{2}}f(e_{i_{1}},e_{i_{2}})
=\summe_{i_{1}=1}^{2}[a_{1i_{1}}a_{21}f(e_{i_{1}},e_{1})+a_{1i_{1}}a_{22}f(e_{i_{1}},e_{2})]
=a_{11}a_{22}f(e_{1},e_{2})+a_{12}a_{21}f(e_{2},e_{1})+a_{11}a_{21}f(e_{1},e_{1})+a_{12}a_{22}f(e_{2},e_{2})[/mm]
Der erste Teil ist also klar, aber beim zweiten da hakt es tierisch:
Teil 2: [mm]\summe_{i_{1}=1}^{k}......\summe_{i_{p}=1}^{k}a_{1i_{1}}*....*a_{pi_{p}}f(e_{i_{1}},...,e_{i_{p}})
= \summe_{1\le i_{1}\le i_{2} \le...\le i_{p}\le k}[\summe_{\pi \in P_{p}}^{n}a_{1i_{\pi(1)}}*....*a_{pi_{\pi(p)}}f(e_{i_{\pi(1)}},...,e_{i_{\pi(p)}})] [/mm]
[mm] \summe_{1\le i_{1}\le i_{2} \le 2}[\summe_{\pi \in P_{2}}a_{1i_{\pi(1)}}*a_{pi_{\pi(2)}}f(e_{i_{\pi(1)}},e_{i_{\pi(2)}})]
=\summe_{1\le i_{1}\le i_{2} \le 2}[a_{1i_{1}}a_{2i_{2}}f(e_{i_{1}},e_{i_{2}})+a_{1i_{2}}a_{2i_{1}}f(e_{i_{2}},e_{i_{1}})] [/red][/mm]
Und in diesem und dem nächsten Schritt liegt jetzt mein Problem, denn die Summe sagt mir doch jetzt, dass ich über folgende Fälle summieren muss:
[mm] i_{1}=i_{2}=1;
i_{1}=1 , i_{2}=2;
i_{1}=2 , i_{2}=2;[/mm]
oder?
Aber dann gibt die Summe:
[mm]\summe_{1\le i_{1}\le i_{2} \le 2}[a_{1i_{1}}a_{2i_{2}}f(e_{i_{1}},e_{i_{2}})+a_{1i_{2}}a_{2i_{1}}f(e_{i_{2}},e_{i_{1}})]
=a_{11}a_{21}f(e_{1},e_{1})+a_{11}a_{21}f(e_{1},e_{1})+a_{11}a_{22}f(e_{1},e_{2})+a_{12}a_{21}f(e_{2},e_{1})+a_{12}a_{22}f(e_{2},e_{2})+a_{12}a_{22}f(e_{2},e_{2})[/mm]
Das passt ja offensichtlich nicht zu dem Ergebnis des ersten Teils! Der Rest vom Beweis ist dann wieder klar!
Meine Frage an euch ist jetzt, wo mach ich den Fehler und kann mir vielleicht jemand das Lemma etwas anschaulicher erklären?
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:32 Fr 21.09.2007 | Autor: | rainerS |
Hallo,
du musst bedenken, dass f nach seiner Definition alternierend ist, also [mm]f(a,b)=-f(b,a)[/mm]. Damit ist für alle a: [mm]f(a,a)=0[/mm].
Viele Grüße
Rainer
|
|
|
|
|
Hi, danke für die Antwort!
Bedeutet das also, dass alternierend nichts anderes als antisymmetrisch bedeutet,denn [mm]f(a,b)=-f(b,a)[/mm] war bei uns die Bedingung für antisymmetrisch!
Gruß
Deuterinomium
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:01 Fr 21.09.2007 | Autor: | rainerS |
Hallo!
Die übliche Definition von alternierend ist, dass die Multilinearform 0 ist, wenn zwei der Argumente gleich sind, also [mm]f(\dots,v,\dots,v,\dots) = 0 [/mm].
Die Antisymmetrie folgt daraus, wenn du v=u+w setzt und die Linearität ausnutzt:
[mm]0=f(\dots,u+w,\dots,u+w,\dots) = f(\dots,u,\dots,u,\dots)+ f(\dots,u,\dots,w,\dots) +f(\dots,w,\dots,u,\dots)+ f(\dots,w,\dots,w,\dots)[/mm].
Viele Grüße
Rainer
|
|
|
|
|
Danke!
Gruß Deuterinomium
|
|
|
|