Multinomialkoeffizient? < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 20:37 Fr 04.01.2013 | Autor: | bandchef |
Aufgabe | 20 Stimmen werden zufällig auf 3 Kandidaten verteilt. Wie groß ist die Wahrscheinlichkeit, dass der Kandidat A 10 Stimmen und die Kandidaten B und C jeweils 5 Stimmen erhalten? |
Hi Leute!
Ich möchte nun diese Aufgabe lösen. Ich weiß, dass ich hier irgendwie mit Variationen und dem Multinomialkoeffizienten arbeiten muss. Aber wie immer die selbe Frage: Wie komm ich drauf?
|
|
|
|
Stelle dir vor, es werden 20 nummerierte Zettel ausgelegt, und jemand soll auf jeden Zettel A, B oder C schreiben.
Für den 1. Zettel hat er 3 Mgl., für den 2. usw.
Es gibt somit [mm] 3^{20} [/mm] Mgl., die Zettel auszufüllen.
Nun soll er genau 10 davon mit A ausfüllen. Die sucht er sich aus. Dafür gibt es [mm] \pmat{ 20 \\ 10} [/mm] Mgl. Die beschriftet er mit A. von den nächsten 10 sucht er sich 5 für B aus. Dafür gibt es [mm] \pmat{ 10 \\ 5} [/mm] Mgl. Die beschriftet er mit B. Für die restlichen 5 gibt es nur eine Mgl. (=Rest), die beschriftet er mit C.
Somit gibt es [mm] \pmat{ 20 \\ 10}*\pmat{ 10 \\ 5} [/mm] Mgl. zum gewünschten Ausfüllen, [mm] 3^{20} [/mm] Mgl. überhaupt. Somit ist
[mm] p=\bruch{\pmat{ 20 \\ 10}*\pmat{ 10 \\ 5} }{3^{20}}.
[/mm]
Dass tatsächlich die Reihenfolge keine Rolle spielt, ändert nichts am Ergebnis. Die Berechnung ist aber mit Reihenfolge einfacher.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:57 Fr 04.01.2013 | Autor: | luis52 |
Moin,
ich moechte HJKweseleits Loesung noch auf eine andere Weise bestaetigen: Betrachte eine Urne mit $N_$ Kugeln, wovon [mm] $N_j$ [/mm] die Farbe [mm] $F_j$ [/mm] haben, [mm] $N_1+\dots+N_k=N$. [/mm] Aus der Urne werden $n$ Kugeln mit Zuruecklegen gezogen. Es bezeichne [mm] $X_j$ [/mm] die Anzahl der Kugeln der Farbe [mm] $F_j$. [/mm] Dann gilt
[mm] $P(X_1=x_1,\dots,X_k=x_k)=\frac{n!}{x_1!x_2!\cdot\ldots\cdot x_k!}p_1^{x_1}p_2^{x_2}\cdot\ldots\cdot p_k^{x_k}$
[/mm]
mit [mm] $p_j=N_j/N$ [/mm] (Multinomialverteilung).
In deinem Fall besteht die Urne aus drei Kugel mit den Farben A,B,C, aus der $n=20$ Kugeln m.Z. gezogen werden. Dann ist
[mm] $P(X_A=20,X_B=5,X_C=5)=\frac{20!}{10!5!5!}(\frac{1}{3})^{10}(\frac{1}{3})^{5}(\frac{1}{3})^{5}$.
[/mm]
vg Luis
|
|
|
|