matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieMultiplikation injektiv
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Zahlentheorie" - Multiplikation injektiv
Multiplikation injektiv < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Multiplikation injektiv: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:19 So 03.10.2010
Autor: Salamence

Aufgabe
Sei [mm] n\in \IN [/mm] und sei [mm] m\in \IZ. [/mm]

[mm] f_{m}^{n}: \IZ/n\IZ \to \IZ/n\IZ [/mm]
[mm] a+n\IZ \mapsto m*a+n\IZ [/mm]

a) Zeige, dass die vorliegende Abbildung für m=2 und n=3 injektiv ist.
b) Finde [mm] n\in \IN [/mm] und [mm] 0\not=m\not=n, [/mm] sodass die Abbildung nicht injektiv ist.
c) Zeige: Sei n prim und [mm] m\notin n\IZ. [/mm] Dann ist die Abbildung injektiv.
d) Finde allgemeine Bedingungen für Injektivität.

Heyho!

a) und b) sind ja nicht der Rede wert...
Aber wie zeige ich c)?
[mm] f_{m}^{n}(a+n\IZ)=f_{m}^{n}(b+n\IZ) [/mm]
[mm] \gdw m*a\equiv [/mm] m*b mod n
[mm] \gdw \exists k\in \IZ: [/mm] m*b=m*a+k*n

Wo kann man da die Voraussetzungen verwenden?

Und wie ist das bei d)? Raten würd ich ja: [mm] m\not=0 [/mm] und ggT(m,n)=1
(Scheint zumindest für einige Beispiele hinzuhauen)
Doch wie ich das beweisen sollte, weiß ich nun nicht.



        
Bezug
Multiplikation injektiv: Antwort
Status: (Antwort) fertig Status 
Datum: 22:10 So 03.10.2010
Autor: felixf

Moin!

> Sei [mm]n\in \IN[/mm] und sei [mm]m\in \IZ.[/mm]
>
> [mm]f_{m}^{n}: \IZ/n\IZ \to \IZ/n\IZ[/mm]
>  [mm]a+n\IZ \mapsto m*a+n\IZ[/mm]
>  
> a) Zeige, dass die vorliegende Abbildung für m=2 und n=3
> injektiv ist.
>  b) Finde [mm]n\in \IN[/mm] und [mm]0\not=m\not=n,[/mm] sodass die Abbildung
> nicht injektiv ist.
>  c) Zeige: Sei n prim und [mm]m\notin n\IZ.[/mm] Dann ist die
> Abbildung injektiv.
>  d) Finde allgemeine Bedingungen für Injektivität.
>  Heyho!
>  
> a) und b) sind ja nicht der Rede wert...

Schoen :)

>  Aber wie zeige ich c)?
> [mm]f_{m}^{n}(a+n\IZ)=f_{m}^{n}(b+n\IZ)[/mm]
>  [mm]\gdw m*a\equiv[/mm] m*b mod n
>  [mm]\gdw \exists k\in \IZ:[/mm] m*b=m*a+k*n

Wenn zwei Zahlen $x$ und $y$ teilerfremd sind, dann gibt es $x', y' [mm] \in \IZ$ [/mm] mit $x x' + y y' = 1$ (so eine Gleichung nennt sich Bezout-Gleichung). Das ist uebrigens aequivalent dazu, dass $x'$ das Inverse von $x$ modulo $y$ ist: es gilt $x x' [mm] \equiv [/mm] 1 [mm] \pmod{y}$. [/mm]

Bei dieser Aufgabe hilft dir eine Bezout-Gleichung fuer $m$ und $n$ weiter (beachte, dass sie teilerfremd sind).

> Wo kann man da die Voraussetzungen verwenden?
>  
> Und wie ist das bei d)? Raten würd ich ja: [mm]m\not=0[/mm] und
> ggT(m,n)=1

Aus $ggT(m, n) = 1$ folt schon $m [mm] \neq [/mm] 0$. (Ausser fuer $n = 1$, aber dann darf $m$ auch 0 sein.)

>  (Scheint zumindest für einige Beispiele hinzuhauen)
>  Doch wie ich das beweisen sollte, weiß ich nun nicht.

Genauso wie bei b), mit Hilfe einer Bezout-Gleichung :)

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]