matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikMultiplikation von Dichtefkt
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Stochastik" - Multiplikation von Dichtefkt
Multiplikation von Dichtefkt < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Multiplikation von Dichtefkt: Dichtefunktion
Status: (Frage) beantwortet Status 
Datum: 17:10 Mo 19.04.2010
Autor: minus2000

Hallo,
ich habe eine Frage:
Wenn ich an einem Punkt die jeweilige Dichtefunktion von der Geschwindigkeit und Höhe habe:
Ist es möglich die Dichtefunktionen so zu multiplizieren, dass ich die Totalenergie bekomme.
Oder anders: Kann man Dichtefunktionen einfach nicht linear verknüpfen
[mm] (1/2mv^2 [/mm] +mgh)

Ich möchte nicht erst aus Geschwindigkeit  und Höhe die Totalenergie bestimmen und dann daraus die Dichtefunktion.

Vielen Dank!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Multiplikation von Dichtefkt: Antwort
Status: (Antwort) fertig Status 
Datum: 19:03 Mo 19.04.2010
Autor: gfm

Verstehe ich Dich richtig:

Gegeben sind für zwei Zufallsvariablen [mm] X_i [/mm] (i=1,2) deren Dichten [mm] f_{X_i}(s) [/mm] sowie eine Linearkombination [mm] Z=aX_1+bX_2 [/mm] und Dich interessiert die Dichte von Z?

LG

gfm






Bezug
                
Bezug
Multiplikation von Dichtefkt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:29 Mo 19.04.2010
Autor: minus2000

Hi,
ja, aber dabei soll es sich nicht nur um eine einfache Linearkombination handeln, sondern auch um nicht lineare Verknüpfungen.

[mm] Z=aX^2 [/mm] + bY

Und dann hätte ich gerne die Dichtefunktion von Z. Ist es sozusagen möglich dies über die Dichgefunktionen von X und Y zu erhalten...

Bezug
                        
Bezug
Multiplikation von Dichtefkt: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 00:54 Di 20.04.2010
Autor: gfm

[mm] aX^2+bY=aU+bY [/mm] mit [mm] U=X^2. [/mm] Also im Prinzip eine Linearkombination, da die Dichte von U aus der von X ohne weiteres bestimmt werden kann.

Frage: Welche gemeinsame Verteilung haben Deine Zufallsvariablen? Denn

mit Z:=aX+bY ist

[mm] F_Z(t)=\integral_{\Omega} 1_{(-\infty,t]}(Z)dP=\integral_{Z(\Omega)} 1_{(-\infty,t]}(au+bv))dF_{(X,Y)}(u,v) [/mm]

und hier kommt man ohne die Struktur von [mm] F_{X,Y}(u,v) [/mm] nicht weiter.

LG

gfm

Bezug
                                
Bezug
Multiplikation von Dichtefkt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:47 Di 20.04.2010
Autor: minus2000

Und wäre es möglich auch eine nichtlineare Transformation durchzuführen.
Das heißt ich hätte eine Dichtefunktion der Masse und eben der Geschwindigkeit und möchte eine Dichtefunktion der kinetischen Energie bestimmen?

Sprich: Dichte Ekin = 1/2* f(m) * [mm] f(v)^2 [/mm]

Bezug
                                        
Bezug
Multiplikation von Dichtefkt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:18 Di 20.04.2010
Autor: gfm


> Und wäre es möglich auch eine nichtlineare Transformation
> durchzuführen.
>  Das heißt ich hätte eine Dichtefunktion der Masse und
> eben der Geschwindigkeit und möchte eine Dichtefunktion
> der kinetischen Energie bestimmen?
>  
> Sprich: Dichte Ekin = 1/2* f(m) * [mm]f(v)^2[/mm]

Du meinst sicher:

[mm] E=\frac{1}{2}MV^2 [/mm]

mit zwei Zufallsvariablen M und V und deren gemeinsame Dichte

[mm] f_{(M,V)}(m,v)=f_{M,V}(m|v)f_V(v) [/mm]

ist.

[mm] f_{M,V}(m|v) [/mm] ist die Dichte von M an der Stelle m unter der Voraussetzung, dass V den Wert v hat.

Gemeinsame Dichte deswegen, weil  z.B. in diesem Kontext die Massenverteilung durchaus einen Einfluß auf die Geschwindigkeitsverteilung haben könnte.

Erst wenn der Wert von V keinen Einfluss auf die Wahrscheinlichkeit von M, darf man annehmen, dass

[mm] f_{(M,V)}(m,v)=f_{M}(m)f_{V}(v) [/mm]

Wenn die gemeinsame Verteilung zweier reellwertiger Zufallsvariablen X,Y

[mm] F_{(X,Y)}(u,v):=P(\{X\le u\}\cap\{Y\le v\}) [/mm] ist und Z aus X,Y durch eine geeignete reellwertige Funktion  g

Z:=g(X,Y)

aus beiden hervorgeht, ist die Verteilung von Z gegeben durch

[mm] F_Z(w):=P(\{Z\le w\})=\integral_{\IR^2} 1_{(-\infty,w]}(g(u,v))dF_{(X,Y)}(u,v) [/mm]

[mm] =\integral_{\IR^2} 1_{(-\infty,w]}(g(u,v))dF_{(X,Y)}(u,v)=\integral_{\{(x,y):g(x,y)\le w\}}dF_{(X,Y)}(u,v) [/mm]

und wenn die Verteilung [mm] F_{(X,Y)} [/mm] eine Dichte hat:

[mm] =\integral_{\{(x,y):g(x,y)\le w\}}f_{(X,Y)}(u,v)dudv [/mm]

Nun hängt es von g und [mm] f_{(X,Y)} [/mm] ab wie man weiter machen kann.

Wenn man schließlich [mm] F_Z(w) [/mm] bestimmt hat, ist [mm] F_Z' [/mm] die Dichte.

Wenn dieser Weg zu schwierig ist, kann man auch versuchen, den Weg über die charakteristische Funktion [mm] E(e^{itZ}) [/mm] zu gehen, insbesondere, wenn man nur an Momenten interessiert ist.

LG

gfm










Bezug
                                
Bezug
Multiplikation von Dichtefkt: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:20 Do 22.04.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]