Neue Aufgaben Nr. 10 < Wettbewerbe < Schule < Mathe < Vorhilfe
|
Status: |
(Übungsaufgabe) Übungsaufgabe | Datum: | 15:37 Sa 19.02.2005 | Autor: | Hanno |
Hallo an alle!
Quelle: Kanadische Mathematik Olympiade 1971
Seien $x,y$ positive, reelle Zahlen mit $x+y=1$. Beweise, dass dann
[mm] $\left(1+\frac{1}{x}\right) \left(1+\frac{1}{y}\right) \geq [/mm] 9$
gilt.
Liebe Grüße,
Hanno
|
|
|
|
Hi Hanno,
meine Lösung ist vielleicht unelegant und simple rechnerei - aber klappt.
Nachaufgabenstellung ist y=1-x. Als Lösung reicht es nun vollkommen aus, die Funktion [mm]f(x)=\left(1+ \frac{1}{x}\right) \left(1+\frac{1}{1-x}\left)=\frac{-x^2+x+1}{x-x^2}[/mm] zu diskutieren und erhällt für das Intervall (0;1) zwischen den Definitionslücken den Tiefpunkt (1.5|9)!!! q.e.d
Gruß Samuel
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 07:59 So 20.02.2005 | Autor: | Peter_Pein |
Klasse, Samuel!
Bis auf den Tippfehler am Schluss war das auch meine Idee. Da ich aber faul bin und nicht gerne er- ähh - gebrochen rationale Funktionen ableite, argumentierte ich mit der offensichtlichen Symmetrie von $ [mm] f(x)=\left(1+ \frac{1}{x}\right) \left(1+\frac{1}{1-x}\right)$ [/mm] um [mm] $x_{0}=\frac{1}{2}$. [/mm] Aus ihr folgt, dass f dort ein Extremum haben muss oder konstant ist. Das letzte geht schon wegen der Pole bei 0 und 1 nicht. Dort geht f gegen [mm] $+\infty$, [/mm] also ist bei [mm] $x_{0}$ [/mm] ein Minimum. Einsetzen. Fertig.
Schönes Wochenende euch allen,
Peter
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 09:11 So 20.02.2005 | Autor: | Hanno |
Hallo Samuel!
Deine LÖsung ist korrekt, ich hätte es allerdings so gemacht:
Ausklammern führt zu [mm] $1+\frac{1}{x}+\frac{1}{y}+\frac{1}{xy}=1+\frac{x+y+1}{xy}=1+2\frac{xy}$, [/mm] also zur äquivalenten Ungleichung [mm] $xy\leq\frac{1}{4}$. [/mm]
Die folgt aber direkt aus der Voraussetzung, da [mm] $\sqrt{xy}\leq\frac{x+y}{2}=\frac{1}{2}\Rightarrow xy\leq\frac{1}{4}$ [/mm] gilt.
Liebe Grüße,
Hanno
|
|
|
|