matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathematik-WettbewerbeNeue Aufgaben Nr. 9
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Mathematik-Wettbewerbe" - Neue Aufgaben Nr. 9
Neue Aufgaben Nr. 9 < Wettbewerbe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathematik-Wettbewerbe"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Neue Aufgaben Nr. 9: Übungsaufgabe
Status: (Übungsaufgabe) Übungsaufgabe Status 
Datum: 15:35 Sa 19.02.2005
Autor: Hanno

Hallo an alle!

Mathematik-Olympiade, 4. Stufe (Bundesrunde) Klasse 12-13

Es sei $ABC$ ein Dreieck und [mm] $\alpha,\beta,\gamma$ [/mm] seine Innenwinkel. Man zeige, dass $ABC$ genau dann rechtwinklig ist, wenn
[mm] $\frac{sin^2 \alpha+sin^2 \beta+sin^2 \gamma}{cos^2 \alpha+cos^2\beta+cos^2\gamma}=2$ [/mm]
gilt.


Liebe Grüße,
Hanno

        
Bezug
Neue Aufgaben Nr. 9: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:22 Mo 21.02.2005
Autor: moudi

Hallo Hanno

Ich forme zuerst einmal um, indem ich die Gleichung mit dem Nenner multipliziere und indem ich [mm] $\sin^2(\alpha)=1-\cos^2(\alpha)$ [/mm] etc. ersetze.
Man erhält, dass die Ausgangsgleichung äquivalent ist zur Bedingung
[mm] $\cos^2(\alpha)+\cos^2(\beta)+\cos^2(\gamma)=1$. [/mm]


Sei jetzt ABC ein rechtwinkliges Dreieck und sei oBdA [mm] $\gamma=90°$, [/mm] dann ist [mm] $\cos(\gamma)=0$ [/mm] und [mm] $\cos(\beta)=\sin(\alpha)$. [/mm] Das eingesetzt ergibt
[mm] $\cos^2(\alpha)+\cos^2(\beta)+\cos^2(\gamma)=\cos^2(\alpha)+\sin^2(\alpha)=1$. [/mm]


Sei jetzt umgekehrt [mm] $\cos^2(\alpha)+\cos^2(\beta)+\cos^2(\gamma)=1$. [/mm] Subtraktion mit [mm] $\cos^2(\gamma)$ [/mm] ergibt:

[mm] $\cos^2(\alpha)+\cos^2(\beta)=1-\cos^2(\gamma)=\sin^2(\gamma)=\sin^2(\alpha+\beta)$ [/mm]

Die letzte Gleichung folgt aus [mm] $\sin(\gamma)=\sin(180°-(\alpha+\beta))=\sin(\alpha+\beta)$. [/mm]
Anwendung des Additionstheorems des Sinus: [mm] $\sin(\alpha+\beta)=\sin(\alpha)\cos(\beta)+\cos(\alpha)\sin(\beta)$ [/mm] ergibt:

[mm] $\cos^2(\alpha)+\cos^2(\beta)=\sin^2(\alpha)\cos^2(\beta)+\cos^2(\alpha)\sin^2(\beta)+ 2\sin(\alpha)\sin(\beta)\cos(\alpha)\cos(\beta)$ [/mm]

Wir subtrahieren mit [mm] $\sin^2(\alpha)\cos^2(\beta)+\cos^2(\alpha)\sin^2(\beta)$ [/mm] und erhalten:

[mm] $\cos^2(\alpha)-\cos^2(\alpha)\sin^2(\beta)+\cos^2(\beta)-\sin^2(\alpha)\cos^2(\beta)= 2\sin(\alpha)\sin(\beta)\cos(\alpha)\cos(\beta)$ [/mm]

Und daraus:

[mm] $\cos^2(\alpha)(1-\sin^2(\beta))+\cos^2(\beta)(1-\sin^2(\alpha))= 2\sin(\alpha)\sin(\beta)\cos(\alpha)\cos(\beta)$ [/mm]

Und weiter:

[mm] $2\cos^2(\alpha)\cos^2(\beta)= 2\sin(\alpha)\sin(\beta)\cos(\alpha)\cos(\beta)$ [/mm]

Entweder ist [mm] $\cos(\alpha)=0$ ($\alpha=90°$) [/mm] oder [mm] $\cos(\beta)=0$ ($\beta=90°$) [/mm] oder sonst darf man durch [mm] $2\cos^2(\alpha)\cos^2(\beta)\neq [/mm] 0$ dividieren und erhält:

[mm] $1=\frac{\sin(\alpha)\sin(\beta)}{\cos(\alpha)\cos(\beta)}=\tan(\alpha)\tan(\beta)$. [/mm]

Es ist bekannt, dass wenn [mm] $\tan(\alpha)\tan(\beta)=1$ [/mm] ist (und [mm] $0°<\alpha+\beta<180°$), [/mm]  dann [mm] $\alpha+\beta=90°$ [/mm] (und damit [mm] $\gamma=90°$). [/mm] Diese Tatsache kann man dem Additionstheorem des Tangens entnehmen: [mm] $\tan(\alpha+\beta)=\frac{\tan(\alpha)+\tan(\beta)}{1-\tan(\alpha)\tan(\beta)}$. [/mm]
In diesem Fall ist die rechte Seite (Nenner 0) nicht definiert, was nur der Fall ist, wenn [mm] $\alpha+\beta=90°$ [/mm] ist.

mfG Moudi

Bezug
                
Bezug
Neue Aufgaben Nr. 9: Antwort
Status: (Antwort) fertig Status 
Datum: 15:35 Mo 21.02.2005
Autor: Hanno

Hallo Moudi!

Klasse, so in der Art hab ichs auch gemacht :-)

Liebe Grüße,
Hanno

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathematik-Wettbewerbe"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]