matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMatlabNewtonfraktale
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Matlab" - Newtonfraktale
Newtonfraktale < Matlab < Mathe-Software < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Matlab"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Newtonfraktale: Tipp
Status: (Frage) überfällig Status 
Datum: 19:27 So 04.02.2007
Autor: Mikke

Nabend!
Also bei meiner Frage handelt es sich um Fraktale mit Hilfe des Newton-verfahrens. Dieser Algorithmus zur Bestimmung von Lösungen Gleichungen f(x)=0
[mm] f:\IR^{m}->\IR^{m} [/mm] , dass man die iteratonsvorschrift
[mm] x_{n+1}=x_{n}-Df(x_{n})^{-1} [/mm] * [mm] f(x_{n}), [/mm] n=1,2...
solange anwendet , bis der Defekt [mm] norm(x_{n+1}-x_{n} [/mm] unter einer vorgegebenen Toleranz liegt oder eine maximale Anzahl Iterationen ereicht ist- n bezeichnet dann den Interationsindex und Df(x)
die Jakobimatrix [mm] \bruch{\partial f_{i}(x)}{\partial x_{j}}_{(i,j=1,..,m)} [/mm] an der Stelle [mm] x\in \IR^{m}. [/mm]
Jetzt kann man in Matlab wie folgt programmieren:

tol = 1e-7; %Toleranz
maxsteps=7; %max.Anzahl Iterationen
x=x0;
while defekt > tol&&steps<maxsteps
xx =x -Df(x) \ f(x);

defekt = norm (xx - x); %Defekt berechnen
x=xx;
steps=steps+1;          %schritte weiterzählen
end

Jetzt meine Frage:

Wie kann ich den obigen Code zu einer Funktion NEWTON ergänzen, die nach Eingabe der Funktionshandles für die Fkt. f und der Ableitung Df sowie des Startwertes x0, die  Newtoniteration durchführt und als Ergebnis [mm] x_n [/mm] sowie die Anzahl benötiger Schritte zurückgibt. Für die Paramerter tol und maxiter des Verfahrens kann man die obigen Werte nehmen.
Hoffe ihr könnt mir hier helfen und mir zeigen wie das geht.
Danke und Gruß Mikke


        
Bezug
Newtonfraktale: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Di 06.02.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Matlab"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]