matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-NumerikNewtonverfahren,konv, 2dim
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Numerik" - Newtonverfahren,konv, 2dim
Newtonverfahren,konv, 2dim < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Newtonverfahren,konv, 2dim: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 09:12 Sa 09.01.2016
Autor: sissile

Aufgabe
Gegeben sei das nichtlineare Gleichungssystem
[mm] 0=x_1 x_2 [/mm]
[mm] 0=x_1x_2^2 [/mm] + [mm] x_1 -x_2 [/mm]
Ist das 2-dimensionale Newton-Verfahren bzgl. dieses Systems lokal konvergent? Warum?
Berechnen Sie eine Lösung mit Hilfe des 2-dimensionalen newton-Verfahrens für einen Startwert ihrer Wahl in (0,1)^2 in Matlab.


Hallo zusammen,
Ich hab die Frage bereits bei matheplanet vor einer Woche gestellt unter 2-dim Newtonverfahren, Konvergenz? in Unterforum Numerik.
http://matheplanet.com/default3.html?call=viewtopic.php?topic=214885&ref=https%3A%2F%2Fwww.google.at

1)
Wir hatten einen Satz, wann das mehrfachdimensionale Newtonverfahren lokal konvergent ist. Nämlich wenn die Funktion steig differenzierbar ist, eine Art Lipschitzbedingung erfüllt und die Jacobimatrix im Nullpunkt von F invertierbar ist.

Hier das Problem:
F: [mm] \mathbb{R}^2 \rightarrow \mathbb{R}^2 [/mm]
[mm] F=(f_1, f_2)^t [/mm]
[mm] f_1(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} )=x_1*x_2 [/mm]
[mm] f_2(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} )=x_1 x_2^2+x_1-x_2 [/mm]
[mm] F'(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} )=\begin{pmatrix} x_2 & x_1 \\ x_2^2+1 & 2x_2*x_1-1 \end{pmatrix} [/mm]  
Jacobimatrix invertierbar für [mm] x_1x_2^2 -x_2-x_1 \not=0, [/mm] deshalb auch das verfahren nur für diese [mm] x_1, x_2 [/mm] wohldefiniert.
Die Inverse der Jacobimatrix ist: [mm] F'(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} )^{-1}=\frac{1}{x_1x_2^2 - x_2-x_1} \begin{pmatrix} 2x_2*x_1-1 & -x_1 \\ -x_2^2-1 & x_2 \end{pmatrix} [/mm]  

Nun wäre aber für die offensitliche Lösung (0,0) des nichtlinearen Gleichungssystems die Jacomatrix nicht invetierbar:
[mm] F'(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} )=\begin{pmatrix} 0 & 0 \\ 1 & -1 \end{pmatrix} [/mm] also die Grundbedingung gar nicht erfüllt.

2)
Ich hätte deshalb auch einen anderen Versuch indem ich F als Fixpunktgleichung umforme:
Aus der zweiten [mm] Gleichung:x_2= x_1 (x_2^2 [/mm] +1)
und 0= [mm] x_1 [/mm] * [mm] x_2 *x_2 [/mm] + [mm] x_1 -x_2=0*x_2+x_1-x_2=x_1-x_2 \Rightarrow x_1=x_2 [/mm]
[mm] \phi(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix})=\begin{pmatrix} \phi_1(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}) \\ \phi_2(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}) \end{pmatrix}=\begin{pmatrix} x_2 \\ x_1 (x_2^2 +1) \end{pmatrix} [/mm]

Die Jacobimatrix:
[mm] \phi'(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix})=\begin{pmatrix}0& 1 \\ x_2^2+1 & 2*x_2*x_1 \end{pmatrix} [/mm]

Um einen Satz zu verwenden der besagt, dass die Fixpunktiteration lokal konvergiert  müsste ich zeigen können, dass [mm] ||\phi'(x^{\*})||<1 [/mm] für eine Matrixnorm die veträglich ist mit einer Vektornorm und der Lösung der Fixpunktiteration [mm] x^{\*}. [/mm]
Die 1er machen dass aber glaub ich kapput für  [mm] x^{\*}=(0,0) [/mm]

Ich habe auch ein Programm geschrieben, dass für die Startwerte (1/2,1/2) die Lösung (1.0e-15 *0.1091,1.0e-15 *0.1091) in 52 Iterationsschitten liefert...


LG,
sissi

        
Bezug
Newtonverfahren,konv, 2dim: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:20 Mo 11.01.2016
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]