matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisNochmal Isolierte Singularität
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Komplexe Analysis" - Nochmal Isolierte Singularität
Nochmal Isolierte Singularität < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nochmal Isolierte Singularität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:26 Mi 01.08.2007
Autor: Jonez

Aufgabe
Berechne das Kurvenintegral [mm]\integral_{\gamma}{f(z) dz}[/mm] für die Funktion [mm]f(z) := \bruch{1}{z^{2} + 2iz + 3}[/mm] und [mm] \gamma [/mm] gleich dem positiv orientierten Kreis um 0 mit Radius 2.

Hi,

wie ich oben stehende Aufgabe löse, weiß ich eigentlich schon so ungefähr. Also ich berechne erstmal die isolierten Singularitäten und berechne das Integral dann mit dem Residuensatz.

Mein Problem ist jetzt nur, dass ich das mit der Ordnung von Polen nicht ganz so verstanden hab.
Die Singularitäten rechne ich entweder mit der Mitternachts- oder der PQ-Formel aus, und dabei kommen als iso. Sing. raus:
[mm]z_{0} = -3i[/mm] und [mm]z_{1} = i[/mm].

Da nur [mm]z_{1} = i[/mm] innerhalb des Kreises um 0 mit Raidus 2 liegt, kann ich die iso. Sing. in [mm]z_{0}[/mm] ja ignorieren.
Aber welche Ordnung hat dieser Pol bei [mm]z_{1} = i[/mm] jetzt?
Eigentlich würde ich sagen Ordnung 2, da ich ja [mm]f(z) := \bruch{1}{z^{2} + ...}[/mm] hab, aber dann bekomm ich kein gescheites Residuum raus...

Kann mir da jemand helfen?
Danke,
Jonas

        
Bezug
Nochmal Isolierte Singularität: Antwort
Status: (Antwort) fertig Status 
Datum: 21:42 Mi 01.08.2007
Autor: rainerS

Hallo Jonas,

Regel bei rationalen Funktionen: die Ordnung der Pole ist die Vielfachheit der entsprechenden Nullstellen des Nenners minus die Vielfachkeit der Nullstellen des Zählers. Das bekommst du sofort aus dem Fundamentalsatz der Algebra: zerlege Zähler und Nenner in Linearfaktoren und dividiere gleiche Faktoren aus (Hebung der Singularität).

In deinem Fall ist [mm]f(z) = \bruch{1}{(z-z_0)(z-z_1)}[/mm], also hat dein Nenner hat nur einfache Nullstellen, also sind beides Pole erster Ordnung.

Du siehst an dieser Form auch, dass das Residuum im Punkt [mm]z_1[/mm] gerade [mm]\bruch{1}{z_1-z_0}[/mm] ist.

Grüße
  Rainer

Bezug
                
Bezug
Nochmal Isolierte Singularität: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:16 Mi 01.08.2007
Autor: Jonez

Ha perfekt, Danke !!!
Jetzt hab ich das auch endlich mal verstanden :)

Danke !!,
Jonas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]