matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesNormalform
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra Sonstiges" - Normalform
Normalform < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normalform: Normaldarstellung bei Scherung
Status: (Frage) überfällig Status 
Datum: 22:25 Di 09.01.2007
Autor: zicooo

Aufgabe
Gegeben ist die affine Abbildung [mm] \alpha [/mm] : [mm] \vec{x'}= \pmat{ 1+a & a \\ b & 1+b } [/mm] * [mm] \vec{x}, [/mm] a,b sind Element von R ohne {0}.
a) Setzen  Sie a=2 und b=-2. Bestimmen Sie die Normalform der affinen Abbildung [mm] \alpha [/mm] und geben Sie die wesentlichen Eigenschaften dieser Abbildung an.
b) (...)
c) Bestimmen Sie für den Fall b=-a die Normalform der affinen Abbildung [mm] \alpha [/mm] .
d) (...)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,
ich stelle die Frage hier ins Hochschulforum, da es beim Forum für die Oberstufe kein richtiges Unterforum dafür gibt bzw. hier lauten die Unterforen bei Lineare Algebra Determinanten, Eigenwerte,... das passt besser zu unserem Thema "affine Abbildungen". Falls es trotzdem falsch ist, bitte verschieben! Ich schreib nächste Woche meine Abiarbeit und hab bis dahin kein Mathe mehr - deshalb wende ich mich an euch :).

Gut, also im Prinzip ist die oben genannte Aufgabe kein Problem. bei a) und c) ergibt sich als einziger Eigenwert 1 und somit ist die Abbildung eine Scherung mit der Fixpunktgeraden g: [mm] \vec{x}= [/mm] k * [mm] \vektor{1 \\ -1}. [/mm]

Meine Frage ist jetzt eher eine allgemeine Frage: Die Normaldarstellung bei einer Scherung bzw. Scherstreckung, also einer Abbildung einem Eigenwert und einem Eigenvektor (eindimensionaler Eigenraum) ist der uns genannten Form:
[mm] \vec{x'} [/mm] = [mm] \pmat{ r & c \\ 0 & r } [/mm]
Wobei r der Eigenwert ist, bei einer Scherung also 1. Was ist aber der Parameter c? Ich hab manchmal gelesen, dass er 1 ist, aber die Quellen sind nicht sicher ;). Zu einer Normaldarstellung sollte man ja auch die Basis angeben, die ja normalerweise bei affinen Abbildungen zweidimensional ist, bestehend aus den Eigenvektoren. Wie gebe ich diese an, wenn ich nur einen Eigenvektor habe? Die Basis muss doch zweidimensional sein, denn sonst ist sie doch unbrauchbar bei Zeichnungen. Ich blicke da nicht ganz so durch...

Vielen Dank für eure Hilfe!

Gruß Marius

P.S.: Sind affine Abbildungen eigentlich gewöhnlich als quasi fixes Abiturthema (eines von vier eingeschickten Themen, bei denen 3 bearbeitet werden müssen - RLP)? Bisher habe ich noch keinen getroffen, der ähnliches hatte...

        
Bezug
Normalform: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:20 Mo 15.01.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]