matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPartielle DifferentialgleichungenNormalform einer 3-Form
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Partielle Differentialgleichungen" - Normalform einer 3-Form
Normalform einer 3-Form < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normalform einer 3-Form: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:26 Mi 16.06.2010
Autor: Schei_y

Aufgabe
Bestimmen Sie die Normalform folgender 3-Form auf dem [mm] R^5: [/mm]
[mm] sin^2 x_1 dx_1 \wedge dx_2 \wedge dx_5 [/mm] + sin [mm] x_2 [/mm] cos [mm] x_3 dx_1 \wedge dx_2 \wedge dx_3 [/mm] - [mm] cos^2 x_1 dx_5 \wedge [/mm] dx2 [mm] \wedge dx_1 [/mm] - sin [mm] x_3 [/mm] cos [mm] x_2 dx_2 \wedge dx_1 \wedge dx_3+sin^2 x_1 dx_1 \wedge dx_1 \wedge dx_4 [/mm] + [mm] sin(x_2+x_3) dx_1 \wedge dx_3 \wedge dx_2 [/mm]

Ich stehe komplett auf dem Schlauch. Habe leider in der betreffenden Vorlesung gefehlt und entweder bin ich zu doof zum suchen oder google findet icht gescheites zu diesem Thema. Daher wäre ich um Ansätze dankbar!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Normalform einer 3-Form: Antwort
Status: (Antwort) fertig Status 
Datum: 11:50 Mi 16.06.2010
Autor: gfm


> Bestimmen Sie die Normalform folgender 3-Form auf dem [mm]R^5:[/mm]
>  [mm]sin^2 x_1 dx_1 \wedge dx_2 \wedge dx_5[/mm] + sin [mm]x_2[/mm] cos [mm]x_3 dx_1 \wedge dx_2 \wedge dx_3[/mm]
> - [mm]cos^2 x_1 dx_5 \wedge[/mm] dx2 [mm]\wedge dx_1[/mm] - sin [mm]x_3[/mm] cos [mm]x_2 dx_2 \wedge dx_1 \wedge dx_3+sin^2 x_1 dx_1 \wedge dx_1 \wedge dx_4[/mm]
> + [mm]sin(x_2+x_3) dx_1 \wedge dx_3 \wedge dx_2[/mm]
>  Ich stehe
> komplett auf dem Schlauch. Habe leider in der betreffenden
> Vorlesung gefehlt und entweder bin ich zu doof zum suchen
> oder google findet icht gescheites zu diesem Thema. Daher
> wäre ich um Ansätze dankbar!
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Guck mal hier: http://de.wikipedia.org/wiki/Differentialform

Vielleicht hilfst.

LG

gfm

Bezug
                
Bezug
Normalform einer 3-Form: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:05 Mi 16.06.2010
Autor: Schei_y

Wenn sich das mal richtig durchliest und nicht nur überfliegt auf jeden Fall hilfreich. Trotzdem hätte ich gerne ein Beispiel mit Zahlen/Funktionen wenn das möglich wäre.

Bezug
                        
Bezug
Normalform einer 3-Form: Antwort
Status: (Antwort) fertig Status 
Datum: 17:15 Do 17.06.2010
Autor: gfm


> Wenn sich das mal richtig durchliest und nicht nur
> überfliegt auf jeden Fall hilfreich. Trotzdem hätte ich
> gerne ein Beispiel mit Zahlen/Funktionen wenn das möglich
> wäre.

Habe nie Differentialgeometrie gehört. In der Wiki gibt es eine Aussage, dass jede Diff'Form auf eine bestimmte Art geschrieben werden kann. Wie ist denn bei Euch die Normalform definiert?

LG

GFM

Bezug
                                
Bezug
Normalform einer 3-Form: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:59 Sa 19.06.2010
Autor: Schei_y

Normalform: jede $k$-Form lässt sich eindeutig in der Form [mm] $\summe_{I} \omega_I dx_I$ [/mm] darstellen, wobei [mm] $I=(i_1,...,i_k)$ [/mm] mit [mm] $i_1<...
für die ursprüngliche Aufgabe $ [mm] sin^2 x_1 dx_1 \wedge dx_2 \wedge dx_5 [/mm] + sin [mm] x_2 [/mm] cos [mm] x_3 dx_1 \wedge dx_2 \wedge dx_3 [/mm] - [mm] cos^2 x_1 dx_5 \wedge dx_2 dx_1 [/mm] - sin [mm] x_3 [/mm] cos [mm] x_2 dx_2 \wedge dx_1 \wedge dx_3+sin^2 x_1 dx_1 \wedge dx_1 \wedge dx_4 [/mm] + [mm] sin(x_2+x_3) dx_1 \wedge dx_3 \wedge dx_2 [/mm] $ ergibt sich also

$1 [mm] dx_1 \wedge dx_2 \wedge dx_3 [/mm] $

ich habe jetzt weitere Aufgaben dieser Art gelöst und bin jetzt an einer Stelle, wo ich einen Ausdruck $ [mm] (x_1 dx_1 [/mm] - [mm] x_2 dx_2) \wedge [/mm] 0 $ habe. ist das $= 0$ oder [mm] $=(x_1 dx_1 [/mm] - [mm] x_2 dx_2)$? [/mm]

Bezug
                                        
Bezug
Normalform einer 3-Form: Antwort
Status: (Antwort) fertig Status 
Datum: 15:48 Sa 19.06.2010
Autor: gfm


> Normalform: jede [mm]k[/mm]-Form lässt sich eindeutig in der Form
> [mm]\summe_{I} \omega_I dx_I[/mm] darstellen, wobei [mm]I=(i_1,...,i_k)[/mm]
> mit [mm]i_1<...
>  
> für die ursprüngliche Aufgabe [mm]sin^2 x_1 dx_1 \wedge dx_2 \wedge dx_5 + sin x_2 cos x_3 dx_1 \wedge dx_2 \wedge dx_3 - cos^2 x_1 dx_5 \wedge dx_2 dx_1 - sin x_3 cos x_2 dx_2 \wedge dx_1 \wedge dx_3+sin^2 x_1 dx_1 \wedge dx_1 \wedge dx_4 + sin(x_2+x_3) dx_1 \wedge dx_3 \wedge dx_2[/mm]
> ergibt sich also
>
> [mm]1 dx_1 \wedge dx_2 \wedge dx_3[/mm]

Mußt Du nicht

1,2,3
1,2,4
1,2,5
2,3,4
2,3,5
3,4,5

betrachten?

>  
> ich habe jetzt weitere Aufgaben dieser Art gelöst und bin
> jetzt an einer Stelle, wo ich einen Ausdruck [mm](x_1 dx_1 - x_2 dx_2) \wedge 0[/mm]
> habe. ist das [mm]= 0[/mm] oder [mm]=(x_1 dx_1 - x_2 dx_2)[/mm]?

0 würde ich sagen.

LG

gfm

Bezug
                                                
Bezug
Normalform einer 3-Form: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:01 So 20.06.2010
Autor: Schei_y

die haben sich meiner Meinung nach alle raus gekürzt ...

vielen Dank für deine Hilfe!

Bezug
                                                        
Bezug
Normalform einer 3-Form: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:20 Di 22.06.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]