matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraNormalteiler
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Algebra" - Normalteiler
Normalteiler < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normalteiler: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:19 Do 20.07.2006
Autor: ck2000

Aufgabe
Ist G eine endliche Gruppe der Ordnung 56, so besitzt G einen echten Normalteiler.

|G| = 56= 7 * [mm] 2^3 [/mm]
[mm] s_2 \in [/mm] {1, 7} und [mm] s_7 \in [/mm] {1,8}
für [mm] s_7 [/mm] ist man fertig.
sei [mm] s_7 \not= [/mm] 1 also [mm] s_7 [/mm] =8 Nach Lagrange haben zwei verschiedene 7 -Sylows den Durchschnitt {e}.
Warum ist das so? Das steht so in meinem Buch, aber ich versteh es nicht Lagrange sagt doch aus, dass
|G| = |G/U| |U|

Dann beht der Beweis weiter:
Damit verbrauchen die acht 7-Sylows 8*6 +1 Elemente von G.
Mit jeder 2- Sylow haben sie den Durchschnitt {e}
Warum?
Damit bleiben noch genau 7 Elemente für eine 2-Sylow ???
, die ja die Ordnung 8 hat.
Da folglich [mm] s_2 [/mm] =1 ist die einzige 2-Sylow ein Normalteiler von G.

Könnte man auch den Beweis andersherum angehen, indem man [mm] s_2 \not= [/mm] 1 ansetzt und dann folgert, dass [mm] s_7 [/mm] = 1 sein muss?
Wie kommt man auf die Elemente, die noch übrig sind?


Danke für die Hilfe!!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.




        
Bezug
Normalteiler: Antwort
Status: (Antwort) fertig Status 
Datum: 13:07 Fr 21.07.2006
Autor: statler

Hallo!

> Ist G eine endliche Gruppe der Ordnung 56, so besitzt G
> einen echten Normalteiler.
>  |G| = 56= 7 * [mm]2^3[/mm]
>  [mm]s_2 \in[/mm] {1, 7} und [mm]s_7 \in[/mm] {1,8}
>  für [mm]s_7[/mm] = 1 ist man fertig.
>  sei [mm]s_7 \not=[/mm] 1 also [mm]s_7[/mm] =8 Nach Lagrange haben zwei
> verschiedene 7 -Sylows den Durchschnitt {e}.
> Warum ist das so? Das steht so in meinem Buch, aber ich
> versteh es nicht Lagrange sagt doch aus, dass
> |G| = |G/U| |U|

Das bedeutet doch, daß die Ordnung einer Untergruppe die Gruppenordnung teilt, und der Durchschnitt von 2 U-Gruppen ist wieder eine.  Aber 7 hat nur die Teiler 1 und 7, bei Ordnung 7 wären die beiden Sylows gleich, bleibt also nur 1, d. h. {e}.

> Dann geht der Beweis weiter:
>  Damit verbrauchen die acht 7-Sylows 8*6 +1 Elemente von
> G.
>  Mit jeder 2- Sylow haben sie den Durchschnitt {e}
>  Warum?

Weil die Ordnung des Durchschnitts Teiler von 8 und Teiler von 7 sein muß, wie oben.

>  Damit bleiben noch genau 7 Elemente für eine 2-Sylow ???
>  , die ja die Ordnung 8 hat.
>  Da folglich [mm]s_2[/mm] =1 ist die einzige 2-Sylow ein
> Normalteiler von G.
>  
> Könnte man auch den Beweis andersherum angehen, indem man
> [mm]s_2 \not=[/mm] 1 ansetzt und dann folgert, dass [mm]s_7[/mm] = 1 sein
> muss?

Ja, wenn es mind. 2 2-Sylows gibt, liegen im Durchschnitt höchstens 4 Elemente, d. h. 12 Elemente sind verbraucht. Dann passen in den Rest keine 8 7-Sylows mehr rein, weil ich dafür noch 48 'freie' Elemente brauche.

Gruß aus HH-Harburg
Dieter


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]